巫和懋臺灣大學:國際企業學研究所劉家銘Liu, Chia-MingChia-MingLiu2007-11-282018-06-292007-11-282018-06-292004http://ntur.lib.ntu.edu.tw//handle/246246/60467本文主要分析當市場上具有「模型不確定(Model Uncertainty)」的現象時,選擇權要如何進行定價。在研究的方法上,我們主要利用單期代表性個人的模型,並使用「極大極小化方法(Maxmin Approach)」的方式來分析當市場上存在模型不確定且投資人厭惡此不確定性時,選擇權的市場均衡價格應如何決定。而從分析的結果中可以發現,當市場上的模型不確定的程度愈高時,選擇權的均衡價格會愈大,此外我們也發現模型不確定下選擇權價格的一些參數性質,也與Black-Scholes選擇權定價模型中的參數性質大致符合,其中包括了波動率對選擇權均衡價格的影響以及執行價對於選擇權均衡價格的影響。同時我們也發現,當市場上面有著模型不確定現象且只在存一個代表性個人時,傳統理論的「Put-Call Parity」依然會成立。The main purpose of this thesis is to find out the way to price option when the model uncertainty exists in the market. First, we construct a one-period model with a representative agent who is uncertainty aversion. Then, we use the maxmin approach to derive the equilibrium market price of the option. In the result of our analysis, we find that the more the degree of the model uncertainty in the market, the higher the equilibrium market price of the option. Besides, the parameters related to the equilibrium market price of the option have the same properties with those in the Black-Scholes option pricing model, including the volatility and the strike price. Moreover, the「Put-Call Parity」 is still hold if there is only one representative agent in the market.第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究架構 2 第二章 文獻回顧 4 2.1 實證文獻 4 2.2 模型不確定性(Model Uncertainty)相關文獻 5 第三章 模型設定與分析結果 14 3.1 模型設定 14 3.2 極大極小化方法(Maxmin Approach) 16 3.3 選擇權均衡價格 17 3.4 Put-Call Parity 22 3.5 小結 24 第四章 數值分析 25 4.1 價平選擇權 25 4.2 深度價內選擇權 32 4.3 其他價位選擇權 43 第五章 結論與未來發展 51 5.1 結論 51 5.2 未來發展 52 附錄 53 參考文獻 54814208 bytesapplication/pdfen-US模型不確定性選擇權定價極大極小化方法model uncertaintyoption pricingmaxmin approach模型不確定性下之選擇權定價Option Pricing under Model Uncertaintythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/60467/1/ntu-93-R92724046-1.pdf