沈弘俊臺灣大學:應用力學研究所范育睿Fan, Yu-JuiYu-JuiFan2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62557在本篇研究中,藉由量測奈米粒子的布朗運動關係來開發一個新的CRP感測技術。將anti-CRP修飾在帶有螢光的奈米粒子上,anti-CRP會因與CRP有專一性而吸附上CRP,奈米粒子的布朗運動速度則會因為粒子的變大而減緩。此種感測技術在於疾病或是病毒上的感測非常有用,使用上也非常簡單且價格低廉,而且是非常容易與任何的微流系統做晶片上的整合。布朗運動的量測是以為粒子追蹤測速儀作為量測工具。實驗結果中發現,當粒子表面吸附上抗體,粒子會因為CRP的吸附,粒徑從300nm 增加到400nm,而粒子布朗運動速度下降。這意味著布朗運動的速度下降率與粒徑有關的。布朗運動速度下降率與CRP濃度有關;濃度越高下降的速率會越快。布朗運動最後平衡的速度也與濃度呈正相關。而感測的過程不會耗費太多時間,容易做到real-time感測以及整合在攜帶式生物晶片上。未來,可以使用全反射螢光顯微鏡配合微粒子追蹤測速儀用於量測布朗運動,對於較小的粒子可以獲得更好的結果。 In this research, a new CRP sensing technique has been successfully developed by detecting Brownian motions of nano polymer beads. The anti-CRP is coated on the surface of the fluorescent nano-beads to conjugate the CRP in the buffer solution. The Brownian motion velocity becomes slower when the bead size increases during the reaction process. This sensing technique is very useful for the detection of some diseases or virus. In addition, low cost and easy operation enable this technique to be easily integrated in some microfludic devices. In order to obtain the characteristics of particle Brownain motion in the static liquid, a measurement by using micro-particle-tracking-velocimetry (μ-PTV) is employed in our work. The results showed that the diameter of the bead increased from 300nm to 400nm when the CRP was conjugated on the bead surface. The reaction process indicated that the decreasing rates of Brownian velocities depended on the CRP concentration. The Brownian velocities decreased rapidly for high concentration of CRP like 100g/ml.The lower Brownian velocity was obtained for higher CRP like 100g/ml. the目錄 中文摘要 II Abstract III 致謝 IV 目錄 V 圖表目錄 VIII 表格目錄 XI 符號目錄 XII 第一章 緒論 1 1-1前言 1 1-2研究動機及目的 5 1-3文獻回顧 7 1-3-1微粒子影像╱追蹤測速儀 7 1-3-2布朗運動實驗文獻回顧 10 1-4研究方法 11 1-5論文架構 12 第二章 生物分子感測 14 2-1生物感測基本工作原理 14 2-1-1生物感測歷史回顧與定義: 15 2-1-2生物感測之分類 15 2-1-3 生物分子辨識 16 2-1-4抗原與抗體之特異性鍵結 18 2-1-5生物分子間之親和力作用 19 2-2表面分子固定 20 2-2-1生物分子介紹 20 2-2-2基材表面修飾 21 2-3螢光染劑 22 2-3-1 螢光分子基本性質 23 2-3-2 化學發光染劑 24 2-3-3 量子點Quantum dot 25 2-3-4奈米金屬粒子 26 2-4 C反應蛋白介紹 26 第三章 布朗運動 28 3-1 布朗運動數學模式 28 3-2膠體粒子 32 3-3沉降平衡 33 3-4物能轉換機制 35 第四章 實驗設備架構原理與實驗步驟 36 4-1微粒子顯像╱追蹤測速儀原理 36 4-2 實驗設置 38 4-3 微粒子顯像╱追蹤測速儀設備 39 4-4上蓋製程 41 4-4-1 SU-8母模製作 42 4-4-2 翻模製程 43 4-5實驗步驟 43 4-5-1 視野校正: 43 4-5-2 μ-PTV用於粒子研究布朗運動之研究: 44 4-5-3 粒徑與布朗運動: 44 4-5-4 粒子表面修飾官能基與布朗運動關係之研究: 45 4-5-5 抗體的自組裝於奈米懸浮粒子表面實驗: 45 4-5-6 原子粒顯微鏡驗證實驗: 46 4-5-8 其他改進實驗 48 第五章 實驗結果與討論 49 5-1視野校正: 49 5-2利用μ-PTV做布朗運動研究之分析 49 5-3粒徑大小與布朗運動關係之研究 51 5-4粒子表面化學修飾與布朗運動之研究 52 5-5 懸浮抗體球粒子製作結果 53 5-6 原子力顯微鏡驗證實驗 54 5-7 抗原抗體辨識實驗 55 5-8 實驗改進方法 56 5-9 口試委員建議改進部分 58 第六章 結論與未來展望 60 6-1結論 60 6-2未來展望 61 參考文獻 62 圖表目錄 圖1- 1 抗體結構與結合常數關係示意圖 71 圖2-1 各種生物辨識物能轉換方式 71 圖2-2 構型互補與親和力示意圖 72 圖2-3 鹼基對配對示意圖 72 圖2- 4 抗原-抗體可逆反應之抗原鍵結濃度平衡圖 73 圖2-5 EDC的化學結構以及接合方式示意圖 73 圖2-6 各種能量波波長 74 圖2-7 FITC螢光分子的吸收放射波長分布 74 圖2-8 CY3和CY5螢光分子 75 圖2-9 Q-DOT 結構示意圖 75 圖2-10 STREPTAVIDIN和BIOTIN的高特異性鍵結 76 圖2-11 表面修飾CARBOXYL GROUP和 AMINO GROUP的量子點 76 圖2-12 量子點表面修飾硫醇基 77 圖2-13 CRP四級結構,構形示意圖 78 圖2- 14 CRP三級結構 79 圖2- 15 四級結構上的形狀電荷示意圖 80 圖2- 16 C-反應蛋白與高密度脂蛋白之相對危險比例 80 圖2-17 CRP avidity示意圖 81 圖3- 1 沉澱與水深示意圖 81 圖4-1 實驗室之MICRO-PIV/PTV 架設 82 圖4-2 PIV/PTV選擇操作流程 83 圖4-3 研究實驗設備設置圖 84 圖4-4 粒子靠近壁面示意圖 84 圖4-5 靠近壁面距離與擴散係數關係圖 85 圖4-6 上蓋製程步驟 86 圖4-7 粒子接合抗體製作步驟示意圖 87 圖5-1 倍率放大量尺實驗圖 89 圖5-2 CCD擷取粒子影像圖 90 圖5-3 粒子辨識假彩色輔助圖 91 圖5-4 辨識粒子並做PTV分析 91 圖5-5 為布朗運動統計結果 92 圖5-6 不同大小的粒子布朗運動速度分析 93 圖5-7 兩種粒子的機率密度分佈函數比較 94 圖5-8 粒子聚集現象 95 圖5-9 水循環散熱系統 96 圖5-10 利用AFM掃出未接抗體的粒子圖及分析 97 圖5-11 利用AFM掃描有接抗體的粒子圖形及分析 98 圖5-12 不同濃度CRP辨識結果 99 圖5-13 濃度與反應時間關係 100 圖5-14 (a)與(b)為兩位健康同學的血清當作流體所做的實驗 101 圖5-15 使用小粒子對不同濃度CRP辨識 102 圖 5-16 使用300nm粒子覆蓋多層抗體以及增加CRP濃度 103 表格目錄 表2- 1 生物感測器辨識種類分類表 104 表2- 2 生物感測器之傳輸轉換機制分類表 105 表2- 3 分子間交互作用力之種類 106 表2-4 螢光分子資訊 106 表2-5 CRP出現的疾病 107 表3-1 膠體粒子三種狀態下的微觀巨觀型態 107 表5-1 不同倍率CCD像素大小計算節果表 108 表5-2 兩種粒子比較 1084491276 bytesapplication/pdfen-US布朗運動微粒子追蹤測速儀生物感測技術C反應蛋白Brownian motionmicro Particle Tracking Velocimetrybio-sensor techniqueC-reactive protein利用微粒子追蹤測速儀量測C反應蛋白之布朗運動及其反應檢測Detection of C Reactive Protein Based on Measurement of Brownian Motion by Micro Particle Tracking Velocimetrythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62557/1/ntu-96-R94543024-1.pdf