楊燦堯Yang, Tsan-Yao臺灣大學:地質科學研究所陳乃禎Chen, Nai-ChenNai-ChenChen2010-05-112018-06-282010-05-112018-06-282009U0001-2606200916155600http://ntur.lib.ntu.edu.tw//handle/246246/182925過去研究認為台灣西南海域的高甲烷通量可能是天然氣水合物解離而擴散上來的,但因為表層有大量生物活動,所以測得的氣體不完全是從底下擴散而來。為細究沉積物間隙甲烷氣來源與淺層生物活動的關係,本研究將討論海研一號於2007年與2008年在台灣西南海域利用活塞岩心採樣所取得之岩心,分析沉積物中孔隙水溶解的無機碳(dissolved inorganic carbon,簡稱DIC)碳同位素比值以及甲烷的碳、氫同位素比值,並探討其成因與彼此間的關係。分析結果顯示活動大陸邊緣(active continental margin)的下部斜坡(lower slope)測站(GT1、26、27、28),其碳同位素比值介於 -72.8~-112 ‰,主要屬生物性來源;而位於活動大陸邊緣的上部斜坡(upper slope)的測站GT39B,其值介於 -45~-63.8 ‰,以熱裂解氣體為主要來源。比較甲烷與DIC碳同位素比值隨深度變化圖,發現甲烷氣體與DIC的碳同位素比值於硫酸鹽與甲烷過渡帶(sulfate methane transition,簡稱SMT)有一最低值。造成此一低值的原因可能和甲烷生成反應(methanogenesis,其中最主要是二氧化碳還原反應carbonate reduction,CO2+4H2-->CH4+2H2O)以及甲烷厭氧氧化反應(anaerobic methane oxidation,簡稱AMO)同時出現所造成,如此可以證實此兩種細菌活動的存在造成的碳循環有關。於下部斜坡地區的測站,其DIC碳同位素比值變化圖顯示出深度在SMT以下碳同位素比值隨深度漸漸變重的趨勢,這也表示二氧化碳還原反應漸趨重要地位,因此淺層甲烷之來源不可忽略淺層生物活動所造成的影響。In the previous studies, high methane flux in offshore SW Taiwan was considered as methane from gas hydrate dissociation. However, dynamic microbial activities are observed in the shallow sediments indicating mixture of methane from these shallow reactions. In this study, piston core samples from gas hydrate potential area offshore SW Taiwan during several surveys since 2007 ( r-v ORI, Leg 828, 835, 860) are collected. The 13C of dissolved inorganic carbon ( DIC ) and d13C and dD of methane in interstitial water are measured in order to identify the source of methane and biogeochemistry processes. Our results indicate the followings: 1) samples collected from lower slope of active continental margin (sites GT1, 26, 27, 28) exhibit methane which mainly generating by microbial activities (d13C = -72.8 ~ -112 ‰); on the other hand, methane from samples collected from upper slope of active continental margin (site GT39B) is from thermogenic source (d13C = -45 ~ -63.8 ‰). 2) The lightest d13C value of methane and DIC observed at sulfate methane transition (SMT) of depth profile shows that carbon cycling within this transition indeed exists—d13C-depleted methane is generated at the top of methanogenic zone when d13C-depleted CO2 produced by microbially-mediated anaerobic oxidation of methane (AOM), and it is recycled back to methane pool by CO2 reduction. 3) d13C profile of DIC in many sites become heavier with increasing depth; this indicates that CO2 reduction become more and more important. All these evidences indicate that significant microbial activities in the study area. Therefore, methane from microbial activities should not be overlooked.目錄、前言 1、研究目的 2-1 了解台灣西南海域甲烷氣之氣體來源 2-2 了解硫酸鹽—甲烷交界帶之生物活動影響 4-3 評估當地生物活動之影響 7amp;#21441;、研究方法 9-1 採樣地點 9-2採樣及分析方法 15-2-1沈積物間隙氣體採樣及分析方法(圖3-2) 15-2-2 海水溶解氣體濃度分析(圖3-3) 17-3 濃度換算—計算GC分析血清瓶內沈積物間隙氣體與底水溶解氣體濃度 18-4沈積物間隙甲烷氣與孔隙水溶解無機碳(DIC)之碳同位素分析 18-4-1溶解無積碳之碳同位素分析 18-4-2沉積物間隙甲烷氣之碳同位素分析 19-6數值模擬 21、分析結果 23-1底水溶解甲烷濃度 23-2沈積物岩心樣品間隙甲烷濃度 25-3甲烷氣碳氫同位素分析結果及DIC碳同位素比值 44、討論 48-1 探討甲烷氣體來源 48-1-1 探討淺層(< 5mbsf)甲烷氣體來源 48-1-2 探討深層(> 5mbsf)甲烷氣體來源 50-2 探討硫酸鹽—甲烷交界帶(SMT)及其附近之生物活動影響 53-2-1 SMT的界定 53-2-2 探討SMT的生物活動 55-2-3 探討SMT下的生物活動 57-3 評估生物活動的影響 59-3-1 活動大陸邊緣之模擬 59-3-2 海底泥火山區域之模擬 61-3-3 綜合討論 62、結論 63、參考文獻 64application/pdf6701458 bytesapplication/pdfen-US甲烷溶解無機碳天然氣水合物碳同位素甲烷生成反應methanedissolved inorganic carbonategas hydratecarbon isotopesmethanogenesis台灣西南海域天然氣水合物好景區之甲烷與溶解無機碳之碳同位素成份變化The carbon isotopes of DIC and methane gas from gas hydrate potential area offshore SW Taiwanthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/182925/1/ntu-98-R96224107-1.pdf