指導教授:林浩雄臺灣大學:電子工程學研究所許家豪Hsu, Chia-HaoChia-HaoHsu2014-11-302018-07-102014-11-302018-07-102014http://ntur.lib.ntu.edu.tw//handle/246246/263886本論文嘗試以拉曼顯微光譜,探悉以氣態源分子束磊晶法所生長之砷化銦奈米線其結構及光學特性。本研究達成了對單根奈米線之材料鑑定,並得到可供解析的砷化銦縱向光學、橫向光學、表面光學三種模態。吾人發現奈米線相較於塊材,其拉曼頻譜之光學模態呈現紅移和選擇律的改變。於變功率量測中,吾人並未觀察到模態位置的明顯移動,顯示雷射加熱於吾人奈米線中並不顯著。透過拉曼光譜各組態的量測,吾人認為乃是由奈米線中堆疊變異產生的短暫纖鋅礦結構,其於X(YY)X量測組態可存在、且頻率較低的E2模態混合於吾人所量測到的TO模態中,因而造成了TO模態約3~4 cm-1的紅移。吾人並於X(ZZ)X和X(YZ)X組態中觀測到了由缺陷引起的纖鋅礦B1模態。本研究首次觀察到了快速熱退火對奈米線拉曼模態造成的藍移現象,吾人認為此乃是ZB和WZ結構間之介面應變因高溫釋放之結果;而介面應變對TO、LO模態約有2 cm-1之紅移效果。In this thesis, the optical and structural properties of InAs nanowires grown by GSMBE have been investigated by μ-Raman spectroscopy. To begin with, the single nanowire signal detection is achieved, and we observed the LO, TO and SO modes of InAs, which are analyzable. Secondly, we discovered that the optical modes of NWs are red-shifted compared with bulk counterparts, and the selection rules are different too. The possibility of laser heating is eliminated via power-variant measurement, in which we haven’t observed mode shifting. By performing measurements in different configurations, we attribute the 3~4 cm-1 redshift of TO mode under X(YY)X to the appearance of E2 mode of Wurzite structure caused by stacking variance in NW. The Wurzite-B1 mode, induced by lattice disorder, is also observed under X(ZZ)X & X(YZ)X. In addition, the blue-shifting of Raman modes after RTA is observed for the first time, and the phenomena is corresponded to the relaxation of interfacial strain between ZB&WZ structures. The redshift caused by interfacial strain is about 2 cm-1 for both TO & LO modes.致謝 i 中文摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xi 第一章 序 論 1 1.1砷化銦奈米線之應用 1 1.2以分子束磊晶成長砷化銦奈米線與其元件製作 2 1.3以顯微拉曼光譜探悉砷化銦奈米線之晶格動力學 2 第二章 實驗架構與量測方法 6 2.1砷化銦奈米線之成長 6 2.2擷取系統 6 2.3掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 7 2.4穿透式電子顯微鏡 7 2.5快速熱退火系統 8 2.6拉曼光譜鑑定(Raman Spectroscopy) 8 2.7奈米線拉曼光譜最佳量測條件找尋 11 2.7.1置放於矽基板上之單根奈米線量測 11 2.7.2奈米線量測之最佳機台參數找尋 12 2.7.3最佳功率調整與雷射加熱效應 14 2.7.4最佳量測基板找尋 15 第三章 砷化銦奈米線之拉曼光譜討論 29 3.1砷化銦奈米線光譜之初探 29 3.2奈米線頻譜之變異性探討 29 3.3表面光學模態之探討 30 3.4奈米線拉曼頻譜與塊材之比較 31 第四章 奈米線頻譜之實驗探悉與討論 37 4.1雷射加熱效應 37 4.2法諾共振效應 39 4.3量子侷限效應 40 4.4晶體結構效應 41 4.4.1奈米線之堆疊變異 41 4.4.2砷化銦纖鋅結構聲子模態 42 4.4.3極化拉曼系統設置 43 4.4.4極化拉曼光譜探悉 44 4.4.5 ZB(110)選擇律驗證實驗 46 4.4.6不同量測組態之奈米線拉曼頻譜 47 4.4.7以TEM觀測砷化銦奈米線之結構轉換 49 4.5長程不規則效應 50 4.5.1由長程不規則導致之頻率左移 50 4.5.2以快速熱退火探討長程不規則與拉曼頻譜之關係 51 4.5.3以多型体描述奈米線中之長程不規則 52 4.5.4以空間相關性模型描述奈米線中之長程不規則 53 4.5.5以介面應變描述奈米線中之長程不規則 55 第五章 結論 78 參考資料 79  5998683 bytesapplication/pdf論文公開時間:2014/08/16論文使用權限:同意有償授權(權利金給回饋學校)拉曼顯微光譜砷化銦奈米線氣態源分子束磊晶堆疊變異以顯微拉曼光譜探悉砷化銦奈米線之晶格動力學Lattice Dynamics Investigation of InAs Nanowires by Micro Raman Spectroscopythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263886/1/ntu-103-R01943068-1.pdf