黃坤祥臺灣大學:材料科學與工程學研究所陳柏源2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/55192隨著高科技的日新月異,電子產品的發展趨勢均朝向高能量密度及小體積發展,熱管理問題勢必將是未來電子產業的一大挑戰,因此冷卻技術的研發將被視為重要的發展目標。散熱片(Heatsink)具有高散熱表面積、幾何形狀多樣化及製程技術成熟等特性,而熱導管則具有熱響應迅速、低熱阻、重量輕及無噪音等特性,因此本研究將結合散熱片與熱導管兩者優越之特性,以金屬粉末射出成形製程(Metal Injection Molding,簡稱MIM)製作平板式熱導管(Vapor Chamber)之銅散熱元件。 本研究可分為三部份,第一部分著重於散熱鰭片之薄件射出,提高鰭片之高寬比、降低厚度、增加鰭片數量及散熱片底座設計城牆形狀,並探討射出、溶脫、熱脫及燒結參數對超薄型散熱銅鰭片之射出成形製程的影響。此外,針對回收料進行分析,以便對射料的回收再利用可行性作初步判斷。本研究在不施加保壓的射出條件下,已可順利射出具有32片鰭片之超薄型散熱銅鰭片,且鰭片之高寬比分別為8.8、11.7、16.0及17.6,而鰭片與底部燒結後之密度均可高達96%,即表示無連通孔產生之顧慮,對於將熱迅速傳至鰭片之能力也較不受影響。在散熱性能方面,散熱片之熱阻值大約為1.156℃/W,而在Tj溫度為70℃及Ta溫度為24℃時,所能負荷的功率大約為40W。 第二部份則是評估平板式熱導管(Vapor Chamber)之毛細結構和注水量對散熱性能的影響。研究發現毛細結構以Powder-Mesh優於Mesh-Mesh,而工作流體為孔隙率的100%注水量時,可達到最低熱阻值1.046℃/W,且在Tj溫度為70℃及Ta溫度為26℃時,所能負荷的功率已經提高到42W。 最後將討論製程參數對射出工件性能之影響,此包括了乾壓製程與MIM製程對試片導電率的影響、添加硬脂酸鋰對燒結密度之影響、添加金屬元素鉍(Bismuth)和浸泡有機溶液對銅試片抗氧化能力之影響、冷均壓加工對試片燒結密度之影響、添加少量金屬元素對硬度之影響以及探討不同比例的PE含量對銅粉射出成形之影響。實驗結果顯示在高射速情況下,隨著PE含量的增加則具有較好的填模流動性質,在冷均壓加工方面,試片燒結密度可提升至97.4%左右。物理性質方面,在相同燒結密度下,MIM製程的試片導電率為74 % IACS明顯低於傳統粉末冶金製程的試片,其導電率大約為87 % IACS,而利用散佈強化或固溶強化機制,分別添加W、Mo、Ag及Fe3P等元素,皆可有效提高銅之硬度。 關鍵字:金屬粉末射出成形、銅粉、散熱片、平板式熱導管The trend of the processor performance is higher power and thus heat dissipation increases significantly every year. As heat dissipation increases, the current trend of the electronic packages is to make smaller, lighter, and thinner devices. The thermal management has become more and more challenging as new electronic devices become more compact but without sacrificing their performances. Fortunately, the heatsink provided high surface area, geometrical pattern and maturity technology, and the heat pipe provide excellent heat transfer capability in cooling technology. In this research, the heatsink and heat pipe were combined to form the vapor chamber using the metal injection molding (MIM) process, and its heat dissipate performance was evaluated. The results of this study were divided into three sections. The first part was to find processing parameters that can increase the number and the aspect ratio of fins. The result of the first part show that the holding pressure plays an important role. After sintering, the densities of the fin and the bottom plate are both about 96%. The thermal resistance is 1.156℃/W, and the power dissipation is 40W when the junction temperature is 70℃. In the second part, the efficiencies of wick and working fluid were evaluated. The optimum condition is Powder-Mesh wick with all pores filled with water. The thermal resistance is 1.046℃/W, and the power dissipation is 42W when the junction temperature is 70℃. Finally, the processing parameters to improve the property of MIM’s specimen were studied. The results show that cold isostatic pressing process (CIP) can improve the relative density by about 1%. Increasing PE content can reduce the injection resistance in the spiral flow test. The hardness could be increased by adding W, Mo, Ag and Fe3P respectively. On the electric conductivity, specimen of MIM process is inferior to the traditional powder metallurgy process. Keywords:Metal Injection Molding(MIM), Copper Powders, Heatsink, Vapor Chamber, Heat Dissipation.目 錄 Abstract.............................................. I 摘 要................................................ III 目 錄................................................ V 第一章 簡介........................................... 1 第二章 文獻回顧....................................... 4 2-1 散熱元件.......................................... 4 2-1-1 散熱片(Heatsink)................................ 4 2-1-1-1 散熱片之設計.................................. 4 2-1-1-2 製作方式及種類................................ 7 2-1-2 平板式熱導管(Flat Plate Heat Pipe or Vapor Chamber).............................................. 9 2-1-2-1 工作流體(Working Fluid)....................... 10 2-1-2-2 毛細結構(Wick Structure)...................... 11 2-2 射出成形(Metal Injection Molding, MIM)............ 12 2-2-1 銅粉之選擇...................................... 15 2-2-2 黏結劑之性質.................................... 16 2-2-3 緻密化.......................................... 20 2-2-3-1 脫脂過程...................................... 20 2-2-3-2 添加劑........................................ 22 2-2-3-3 燒結製程...................................... 25 2-3 純銅之性質........................................ 27 2-3-1 導電性質........................................ 27 2-3-1-1 密度與孔隙率對導電性之影響.................... 28 2-3-1-2 雜質含量對導電性之影響........................ 28 2-3-2 導熱性質........................................ 31 2-3-3 抗氧化.......................................... 33 2-4 研究動機.......................................... 34 第三章 實驗........................................... 35 3-1 實驗設計與規劃.................................... 35 3-2 原料.............................................. 36 3-2-1 基礎粉.......................................... 36 3-2-2 黏結劑.......................................... 39 3-3 混煉.............................................. 39 3-4 射出成形.......................................... 40 3-5 溶劑脫脂.......................................... 42 3-6 熱脫脂及燒結製程.................................. 42 3-7 平板式熱導管(Vapor Chamber)之製作................. 43 3-7-1 平板式熱導管架構................................ 43 3-7-2 平板式熱導管內部之毛細結構...................... 43 3-7-3 還原及組裝...................................... 46 3-8 冷均壓加工(Cold Isostatic Pressing, CIP).......... 48 3-9 射出成形與傳統粉末冶金製程之比較.................. 49 3-10 不同PE含量對銅粉射出成形影響..................... 49 3-11 抗氧化測試....................................... 50 3-11-1 添加微量金屬鉍粉............................... 50 3-11-2 浸泡有機抗氧化劑............................... 51 3-12 添加硬脂酸鋰對燒結密度之影響..................... 52 3-13 添加少量金屬元素對燒結密度及硬度之影響........... 52 3-14 性質測試......................................... 55 3-14-1 黏度測試....................................... 55 3-14-2 燒結熱膨脹儀................................... 55 3-14-3 熱阻值計算..................................... 56 3-15 實驗儀器......................................... 58 第四章 實驗結果....................................... 59 4-1 MIM製程製作超薄型散熱銅鰭片(使用銅粉A635-No.1).... 59 4-1-1 純銅粉混煉結果.................................. 59 4-1-1-1 一般混煉方式.................................. 59 4-1-1-2 銅射料黏度性質測試............................ 59 4-1-2 純銅之射出成形.................................. 61 4-1-2-1 超薄型散熱銅鰭片射出成形...................... 61 4-1-2-2生胚密度比較................................... 64 4-1-2-3 一次射料與二次射料之比較...................... 66 4-1-3 生胚之溶劑脫脂.................................. 70 4-1-4 熱脫脂與燒結製程................................ 74 4-1-4-1 散熱片之熱脫脂與燒結製程...................... 74 4-1-4-2 燒結過程中的尺寸變化.......................... 75 4-1-4-3 熱脫及燒結時散熱片的擺放位置及載台種類........ 77 4-1-4-4 燒結後散熱片之性質............................ 80 4-2 MIM製程製作超薄型散熱銅鰭片(使用銅粉A635-No.2).... 84 4-2-1 超薄型散熱銅鰭片射出成形........................ 84 4-2-2 生胚密度及燒結後散熱片之性質比較................ 87 4-3 冷均壓加工(Cold Isostatic Pressing, CIP).......... 93 4-4 射出成形與傳統粉末冶金製程之比較.................. 94 4-5 不同PE含量對銅粉射出成形之結果.................... 97 4-6 抗氧化測試結果.....................................101 4-6-1 添加微量金屬鉍粉................................ 101 4-6-2 浸泡有機抗氧化劑................................ 102 4-7 添加硬脂酸鋰對燒結密度之結果...................... 104 4-7-1 射出成形及生胚強度.............................. 104 4-7-2 溶劑脫脂、熱脫脂、燒結及性質測試................ 108 4-8 添加少量金屬元素對燒結密度及硬度之影響............ 113 4-9 平板式熱導管...................................... 116 第五章 討論........................................... 122 5-1 以MIM製程製作超薄型散熱銅鰭片之製程參數討論....... 122 5-2 不同PE含量對銅粉射出成形之結果討論................ 124 5-3 在MIM製程中添加硬脂酸鋰對燒結密度之結果討論....... 125 5-4 添加少量金屬元素對燒結密度及硬度之結果討論........ 127 5-5 平板式熱導管性能之結果討論........................ 129 第六章 結論........................................... 130 第七章 未來工作....................................... 132 參考文獻.............................................. 133 圖目錄 圖1- 1 晶片熱通量之成長趨勢[3]........................ 3 圖1- 2 散熱鰭片分別以銅、鋁及平板式熱導管為基底之熱阻測試[4]................................................... 3 圖2- 1 熱擴散板向上或向下散熱能力之示意圖[5].......... 5 圖2- 2 熱擴散板在不同的發熱功率所相對的熱阻值[5]...... 6 圖2- 3 在自然對流下溫升與熱對流係數關係圖[7].......... 6 圖2- 4 (A)熱導管(Heat Pipe);(B)平板式熱導管(Vapor Chamber)[14].................................................. 9 圖2- 5 金屬粉末射出成形之製程[19]..................... 13 圖2- 6 以雙材料MIM製作熱導管及管璧與毛細結構之顯微組織[20].................................................. 14 圖2- 7 不同製程及粒徑的銅粉對燒結密度及熱傳之影響[20]. 16 圖2- 8 添加偶合劑對尺寸穩定性的影響[32]............... 19 圖2- 9 熱脫過程中高分子聚合物的遷移與分佈[34]......... 22 圖2- 10 不同潤滑劑對試片導電率之影響[35].............. 23 圖2- 11 在燒結溫度1050℃,持溫時間對密度與重量損失之影響[43].................................................. 26 圖2- 12 純銅燒結密度對導電率之影響[35]................ 28 圖2- 13 固溶雜質對純銅電阻率之影響[45]................ 29 圖2- 14 鐵含量對純銅導電率的之影響[35]................ 30 圖2- 15 氧含量對純銅導電率之影響[46].................. 30 圖3- 1 實驗流程圖..................................... 35 圖3- 2 銅粉A635-No.1在掃描式電子顯微鏡下之外觀........ 37 圖3- 3 銅粉A635-No.2在掃描式電子顯微鏡下之外觀........ 38 圖3- 4 混煉機示意圖................................... 40 圖3- 5 散熱銅鰭片模具尺寸之規格....................... 41 圖3- 6 平板模具尺寸之規格............................. 41 圖3- 7 純銅熱脫脂及燒結之升溫曲線..................... 43 圖3- 8 平板式熱導管上蓋與下蓋示意圖................... 44 圖3- 9 103A銅粉鬆裝燒結之升溫曲線..................... 45 圖3- 10 銅粉103A在掃描式電子顯微鏡下之外觀............ 46 圖3- 11 銅網在掃描式電子顯微鏡下之外觀................ 46 圖3- 12 還原反應之升溫曲線............................ 47 圖3- 13 Powder-Mesh毛細結構之示意圖................... 47 圖3- 14 Mesh-Mesh毛細結構之示意圖..................... 48 圖3- 15 平板式熱導管.................................. 48 圖3- 16 鉍粉在掃描式電子顯微鏡下的外觀................ 51 圖3- 17 A635銅粉分別添加W、Mo金屬粉末之燒結曲線....... 54 圖3- 18 A635銅粉分別添加Ag、Fe3P金屬粉末之燒結曲線.... 54 圖3- 19 毛細流變儀之示意圖............................ 55 圖3- 20 TMA16/18 熱膨脹儀示意圖....................... 56 圖3- 21 熱阻值量測配置(台達電子工業股份有限公司提供).. 57 圖4- 1 以銅粉及鐵粉為基礎粉的射料在140℃時黏度測試結果 61 圖4- 2 一次料與二次料在不同溫度下之黏度測試結果....... 67 圖4- 3 一次料與二次料之DSC分析結果.................... 69 圖4- 4 一次料與二次料之TGA分析結果.................... 69 圖4- 5 銅散熱片與鐵平板試片之溶脫曲線................. 70 圖4- 6 溶脫造成試片產生裂縫現象:(a)散熱片正面(b)散熱片背面.................................................... 72 圖4- 7 溶脫後試片無裂縫產生:(a)散熱片正面(b)散熱片背面.................................................... 72 圖4- 8 在40℃正庚烷溶劑下溶脫4小時後鰭片破斷面的顯微組織,鰭片厚度分別為:(a)1.0mm;(b)0.75mm;(c)0.55mm;(d)0.5mm 73 圖4- 9 在40℃正庚烷溶劑下溶脫4小時後鰭片表面的顯微組織,鰭片厚度分別為:(a)1.0mm;(b)0.75mm;(c)0.55mm;(d)0.5mm.. 73 圖4- 10 經過熱脫與燒結後的散熱片(a) 正面中心位置有突起及裂紋;(b)底部出現放射狀裂縫............................. 74 圖4- 11 A635-No.1銅粉在氫氣氣氛下的燒結行為(收縮率對溫度)................................................... 76 圖4- 12 A635-No.1銅粉在氫氣氣氛下的燒結行為(收縮速率對溫度)................................................... 76 圖4- 13 經過熱脫與燒結後的散熱片(a) 正面;(b)底部出現微裂縫.................................................... 77 圖4- 14 以Mode C方式燒結之結果:(a)散熱片正面(b)散熱片背面.................................................... 79 圖4- 15 以Mode D方式燒結之結果:(a)散熱片正面(b)散熱片背面.................................................... 79 圖4- 16 以Mode E方式燒結之結果:(a)散熱片正面(b)散熱片背面.................................................... 80 圖4- 17 以Mold 15條件射出散熱片:(a)射速圖;(b)射壓圖. 87 圖4- 18 以A635-No.2為基礎粉之鰭片燒結後顯微結構:(a)1.0mm(A); (b)0.75mm(B);(c)0.55mm(C1); (d)0.55mm(C2); (e)0.5mm(D)................................................... 92 圖4- 19 燒結密度與導電率之關係圖...................... 95 圖4- 20 黏結劑組成為Control的射料在不同射速下之比較... 98 圖4- 21 黏結劑組成為Binder 1的射料在不同射速下之比較.. 98 圖4- 22 黏結劑組成為Binder 2的射料在不同射速下之比較.. 98 圖4- 23 不同黏結劑組成的射料在射速為33ccm/sec下之比較. 99 圖4- 24 不同黏結劑組成的射料在射速為43ccm/sec下之比較. 100 圖4- 25 不同黏結劑組成的射料在射速為48ccm/sec下之比較. 100 圖4- 26 不同黏結劑組成的射料在射速為53ccm/sec下之比較. 100 圖4- 27 添加鉍粉之抗氧化測試: (a)測試前; (b)測試24小時後.................................................... 102 圖4- 28 浸泡I 39之抗氧化測試: (a)測試前; (b)測試24小時後.................................................... 103 圖4- 29 銅料以Mold a條件射出成形:(a)射速圖;(b)射壓圖 106 圖4- 30 鐵料以Mold f條件射出成形:(a)射速圖;(b)射壓圖 107 圖4- 31 純銅射出成形厚度2mm平板之溶脫曲線............. 109 圖4- 32 平板試片熱脫後之橫截面顯微結構:(a)(b)黏結劑組成為Binder A;(c)(d)黏結劑組成為Control................... 110 圖4- 33 平板試片燒結後之表面顯微結構:(a)(b)黏結劑組成為Binder A;(c)(d)黏結劑組成為Control................... 112 圖4- 34 平板試片燒結後之橫截面顯微結構:(a)(b)黏結劑組成為Binder A;(c)黏結劑組成為Control...................... 113 圖4- 35 平板式熱導管下蓋與103A銅粉鬆裝燒結後之顯微結構 117 圖4- 36 103A銅粉因還原作用造成表面生成裂縫............ 117 圖4- 37 在Tj為70℃下,三種散熱元件之熱阻值比較(未啟動風扇)................................................... 119 圖4- 38 在Tj為70℃下,三種散熱元件之熱阻值比較(有啟動風扇)................................................... 119 圖4- 39 散熱元件底部熱傳均溫性測試示意圖.............. 121 圖5- 1 硬脂酸(SA)與硬脂酸鋰(Li-SA)之TGA分析結果....... 126 圖5- 2 平板式熱導管熱傳分佈示意圖[52]................. 129 表目錄 表2- 1 不同工作流體對不同材料之相容性[15]............. 10 表2- 2 工作流體之熔點、沸點及適用工作溫度範圍[15]..... 11 表2- 3 不同製程對銅燒結密度及熱傳導率之影響[20]....... 14 表2- 4粉末射出成形中黏結劑的特性[24].................. 18 表2- 5常用的黏結劑系統[24]............................ 18 表2- 6 添加劑之組成對燒結密度、連通孔及導電率之影響[37].................................................. 25 表2- 7 金屬之Lorenz常數[48]........................... 32 表2- 8 導電率與熱傳導率之換算結果[35]................. 33 表2- 9 銅粉中添加不同含量的鉍粉對於抗氧化能力之影響[49].................................................. 34 表3- 1 銅粉A635-No.1之粉末特性........................ 37 表3- 2 銅粉A635-No.2之粉末特性........................ 38 表3- 3 射料之黏結劑組成比例........................... 39 表3- 4 銅粉103A之粉末特性............................. 45 表3- 5 不同PE含量之黏結劑組成比例..................... 50 表3- 6 抗氧化溶液組成比例............................. 51 表3- 7 黏結劑組成比例................................. 52 表3- 8 A635銅粉分別添加不同比例之W、Mo、Ag、Fe3P金屬粉末.................................................... 53 表4- 1 以銅粉A635-No.1為基礎粉之射出條件(有施加保壓).. 62 表4- 2 以銅粉A635-No.1為基礎粉之射出條件(有無施加保壓之比較)................................................... 64 表4- 3 以銅粉A635-No.1為基礎粉之鰭片生胚密度(有保壓).. 65 表4- 4 以銅粉A635-No.1為基礎粉之鰭片生胚密度(無保壓).. 66 表4- 5 Surfactant 2偶合劑與Paraffin Liquid(表格內則簡稱P.L.)在不同加熱溫度下的重量損失............................ 68 表4- 6 散熱片擺放方式及搭配不同的載台................. 78 表4- 7 以銅粉A635-No.1為基礎粉之鰭片燒結後氧、氮、碳含量.............................................. 81 表4- 8 以銅粉A635-No.1為基礎粉之鰭片燒結後密度(有保壓) 81 表4- 9 以銅粉A635-No.1為基礎粉之鰭片燒結後密度(無保壓) 82 表4- 10 以銅粉A635-No.1為基礎粉之鰭片燒結後收縮率(有保壓)................................................... 83 表4- 11 以銅粉A635-No.1為基礎粉之鰭片燒結後收縮率(無保壓)................................................... 83 表4- 12 以銅粉A635-No.2為基礎粉之射出條件............. 86 表4- 13 以銅粉A635-No.2為基礎粉之鰭片生胚密度......... 88 表4- 14 以銅粉A635-No.2為基礎粉之鰭片燒結後密度....... 89 表4- 15 以乾壓成形法比較A635-No.1與A635-No.2銅粉之燒結密度.................................................... 90 表4- 16 以銅粉A635-No.2為基礎粉之鰭片燒結後收縮率..... 91 表4- 17 以銅粉A635-No.2為基礎粉之鰭片燒結後氧、氮、碳含量.................................................... 91 表4- 18 銅粉壓胚成形之生胚密度........................ 93 表4- 19 滲油後所測得之燒結密度........................ 93 表4- 20 經過CIP加工後之密度........................... 93 表4- 21 以雙壓雙燒結法製作不同密度及導電率之試片...... 94 表4- 22 不同製程試片之密度與導電率.................... 95 表4- 23 A635-No.2銅粉以不同製程製作試片之C、S、O、N含量.................................................... 96 表4- 24 A635-No.2銅粉以不同製程製作試片之雜質濃度..... 97 表4- 25 添加鉍粉試片之生胚密度........................ 101 表4- 26 添加鉍粉試片燒結後之密度、尺寸收縮率及硬度測試 101 表4- 27 厚度2mm平板模之射出參數....................... 105 表4- 28 厚度2 mm平板試片之生胚強度.................... 108 表4- 29 厚度2 mm平板試片之生胚密度與燒結密度.......... 111 表4- 30 厚度2 mm平板試片之收縮率...................... 112 表4- 31 添加W、Mo金屬元素對燒結密度及硬度之影響....... 114 表4- 32 添加Ag、Fe3P金屬元素對燒結密度及硬度之影響.... 115 表4- 33 三種散熱元件之最大散熱功率及熱阻值............ 120 表4- 34 三種散熱元件之熱傳均溫性測試結果.............. 12123581971 bytesapplication/pdfen-US金屬粉末射出成形銅粉散熱片平板式熱導管Metal Injection Molding(MIM)Copper PowdersHeatsinkVapor ChamberHeat Dissipation銅散熱元件之MIM製程及散熱性質研究thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55192/1/ntu-94-R92527015-1.pdf