2013-01-182024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/684139摘要:依據水利署「新世紀水資源政策綱領」策略與措施、推廣回收再生利用,蓬勃水利產業發展,從目前政策推動趨勢來看,逐步推動國內水再生事業,落實水源多元化目標,是未來重要水源開發的重點項目。都市污水與工業廢水回收之再生水為穩定之新興水源,就效益與風險考量,將再生水運用於工業冷卻類用水應是可以發揮良好之效益與風險管理,然偏高之氮化合物經由化學之錯合反應將造成冷卻與鍋爐系統金屬管材元件之腐蝕,另水中氮化合物亦為生物營養源而導致在水中衍生生物積垢造成水質惡化與水再生薄膜淨水單元之阻塞,影響水再生整體操作效率與效益。現行放流水標準並未管制氨氮與總氮,既設廢污水處理廠建置時並未規劃除氮處理單元,目前亦無法為提升除氮功能而變更土木工程與其他硬體,故如何在既設廢污水處理廠之單元流程架構與土建設施上,提升原設計無法達成之除氮功能,研發適用於既設生水源除氮處理技術,提升和改善再生水源水質,為本計畫主要目標。目前使用於廢污水處理之除氮技術好氧硝化/厭氧脫硝與厭氧氨氧化脫硝,典型的程序為厭氧/缺氧/好氧程序(A2O),藉由外加鹼度與碳源提升其除氮效能。而厭氧氨氧化脫硝除氮則為anammox程序,另外固定污泥法技術(EMMC)亦屬好氧硝化/厭氧脫硝原理之技術程序,固定污泥法技術(EMMC)將活性污泥包埋成污泥體,此程序於單槽即能同時進行好氧硝化及厭氧硝化反應,進而達到同時去除氮碳之效果。EMMC系統可以直接架入活性污泥曝氣槽內,不衍生曝氣與土木硬體工程,在活性污泥曝氣槽中創造A2O的系統,且其系統操控簡單穩定,適合應用於國內既有之廢污水處理廠之除氮技術。國內都市污水與工業廢水處理廠的含氮化合物濃度,都市污水廠近流氨氮16.3~26.0 mg/L;近流總氮19.6~28.4 ;出流氨氮0.3~12.3 ;出流總氮6.1~16.6。石化專業區污水廠近流氨氮53.5~97.0;近流總氮59.9~102.1;出流氨氮65.0~85.3;出流總氮72.6~88.0。顯示國內都市污水與工業廢水處理廠的含氮化合物濃度均須再予提升除氮效率以強化都市污水與工業廢水再生為新興水源用途之潛勢。實驗室規模試驗,EMMC可在好氧環境形成好氧硝化/厭氧脫硝能力,都市生活污水試驗,在水力停留時間6小時、填充率31%與連續曝氣下添加鹼度與碳源,硝化率98.33%,總氮去除率60.02%。科學園區廢水試驗總氮去除效果為38.1%。以活性污泥法結合固定式生物處理系統(EMMC)試驗,水力停留時間12小時、填充率16%、溶氧量6~7.5、連續曝氣且有添加鹼度和碳源的情況下,硝化率98.61%,總氮去除率70.1%;以活性污泥法結合固定式生物處理系統(EMMC)具有良好的除氮成效,活性污泥強化硝化效能,而EMMC分工進行脫硝反應,提升消化與總氮去除功能,此方式之應用結合可以降低填充率。藉由第一年計畫的調查及試驗成果,所得到的實驗室規模固定化生物處理模型單元程序之操作條件及參數,可作為現址模型廠試驗的設計與操作依據,並建立國內技設廢污水處理廠除氮處理技術參考及經濟分析。模型廠除氮技術之驗證及實廠設計,提供既設廢污水廠應用除氮技術之參考,並編製適合國內既設廢污水處理廠應用除氮技術之選用評估、設置、操作維護的技術,納入水利署其99年出版之生活污水、工業廢水再生利用技術手冊,以增加水再生利用技術之完整性。最後依據建立之技術參考與經濟分析,配合水再生潛勢之地點,建議國內提升除氮之再生水源優先廠址,此為第二年度規畫進行之工作項目。<br> Abstract: In accordance with Water Resources Agency, Ministry of Economic Affair emphasizes on developing strategic policy on water reuse domestically. Presently, most of recycled wastewater is used for industrial applications such as for cooling water and boilers. However, one major challenge remains for water reuse industrially is the residual concentration of ammonium ion (NH4+) in the treated wastewater. Excessive amount of ammonium in water would lead to corrosion of water cooling piping or boiler from complex reactions. In addition, ammonium serves as nutrient for biomass synthesis which degrades water quality and causes significant membrane fouling, thus reduces operation efficiency and increases operating cost. Current industrial water quality guideline for ammonium concentration is 0.5-1.0 mg/L or lower. However, the concentration of ammonium from treated domestic wastewater is approximately 5 mg/L while industrial wastewater discharge contains ammonium concentration from 10-150 mg/L or higher. This dramatically raises the cost of water treatment and diminishes the incentive for water reuse application. As a result, it is imperative for the benefit of conserving water resource in Taiwan, feasible ammonium removal techniques are researched and improved upon exiting wastewater treatment processes. Unfortunately, concentration of ammonium was never regulated in water quality guidelines. Wastewater treatment facilities when designed and constructed did not plan and reserve sufficient ground property for expansion. For this reason, the objective of this research proposal is to develop and improve upon currently available ammonium removal techniques for water reuse applications.In the second phase of this project, a pilot plant will be set in Taipei Nei-Fu domestic wastewater treatment plant. The experimental run will be lasting for 6 months to test the operating parameters in a 1000 liters pliant reactor. In addition, a technique guide on nitrogen removal from wastewater will be complied for promoting the nitrogen removal practice in designing and operating of treatment除氮技術硝化脫硝固定生物處理程序Nitrogen removal technologynitrification and denitrificationentrapped mixed microbial cells既設廢污水處理廠除氮技術研發與驗證(2/2)