陳永芳臺灣大學:物理研究所呂俊蔚Leu, June-WeyJune-WeyLeu2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/54621We present a nanolithography technique based on an atomic force microscopy (AFM). A thin resist layer on the sample surface is plastically indented by a vibrating tip. Controlling of the vibration amplitude and tip movement enables one to plow a narrow furrow along line segments of arbitrary length and direction. Different lines segments which form a complex pattern can be plowed at a low scan speed. The complex patterns can be transferred to two-dimension photonic crystal by wet chemical etching. We succeed in fabricating two-dimension photonic crystals of air holes on semiconductors. More interestingly, by a proper design the photoluminescence (PL) intensity of semiconductors with air holes can be enhanced. The interesting phenomenon can be explained by the presence of leaky resonant states created by the coherent scattering from the periodicity of photonic crystal.content Abstract………………………………………………………………III List of Figures………………………………………………………IV 1. Introduction……………………………………………………….1 1.1 Introduction………………………………………………………1 1.2 References………………………………………………………………3 2.Background..............................................4 2.1 Atomic Force Microscopy...............................4 2.1.1 Introduction……………………………………………………4 2.1.2 The principle of Atomic Force Microscopy……………..5 2.1.3 General components of Atomic Force Microscopy……….5 2.1.4 References…………………………………………………....7 2.2 Photoluminescence (PL)……………………………………….13 2.2.1 Photoluminescence Spectroscopy………………………….13 2.2.2 Photoluminescence emission……………………………….13 2.3 Photonic Crystals………………………………………………17 2.3.1 Introduction………………………………………………...17 2.3.2 References…………………………………………………….18 3. Experimental Results and Discussion……………………….20 3.1 Introduction…………………………………………………….20 3.2 Design of 2-D Photonic Crystals……………………………20 3.3 Sample Preparation…………………………………………….21 3.4 The procedures of using AFM lithography…………………22 I 3.5 Measuring the optical properties of triangle air hole lattices.................................................22 3.6 Enhancement of μ-PL Intensity of 2D triangle air hole lattices.................................................22 3.7 References……………………………………………………….23 4. Conclusion…………………………………………………………31 List of Figures Fig.2.1 The AFM operation modes: contact mode, semi-contact mode and non-contact mode………………………………………….8 Fig.2.2 Distance dependence of Van der Waals force compared to the typical tip-surface separations in the contact mode, non-contact mode and semi-contact mode…………………………9 Fig.2.3 Schematic of the AFM measurement system……………10 Fig.2.4 The SEM images of Ultrasharp silicon cantilever tip......................................................11 Fig.2.5 Schematic of the scanner control system……………12 Fig.2.6(a) the absorption process of the direct transition...............................................15 Fig.2.6(b) the absorption process of the in direct transition...............................................15 Fig.2.7 PL Setup……………………………………………………………………16 Fig.2.8(a) Triangle lattice structure…………………………19 Fig.2.8(b) Square lattice structure……………………………19 Fig.3.1 triangle air hole lattices…………………………….24 Fig.3.2 the simulation of different spacing a………………25 Fig.3.3 Parameters setting……………………………………….26 Fig.3.4(a) the AFM image of square air hole lattices…….271186443 bytesapplication/pdfen-US原子力顯微術光子晶體螢光光譜AFM lithographyphotonic crystalsphotoluminescences spectra利用原子力顯微術製作奈米結構及其光學性質之量測Fabrication and optical investigation of nanostructures by Atomic Force Microscopythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/54621/1/ntu-94-R91222014-1.pdf