理學院: 數學研究所指導教授: 張樹城胡宗維Hu, Tsung-WeiTsung-WeiHu2017-03-062018-06-282017-03-062018-06-282016http://ntur.lib.ntu.edu.tw//handle/246246/276834瑞曲流(Ricci flow) 為理察• 哈密頓(Richard Hamilton) 為解決三維龐加萊猜想(Poincaré conjecture) 所發展的重要工具。瑞曲流中的孤立子(Solitons) 是在瑞曲流中的自我相似解(self-similar solution),是瑞曲流奇點的重要模型,裴瑞爾曼(Grigori Perelman) 在三維成功發展處理孤立子的技巧,進而解決龐加萊猜想。這些孤立子的分類中,有一類稱為梯度孤立子(Gradient soliton),可由梯度函數描述。 在2015 年Ovidiu Munteanu 與王嘉平共同發表的一篇論文中,展示了一種估計四維瑞曲流梯度孤立子中黎曼曲率、里奇曲率與純量曲率的方法,本論文將介紹前人在多維度梯度孤立子的一些結果,並介紹Ovidiu Munteanu 與王嘉平在四維上的估計方法。To solve the Poincaré conjecture on 3-dimensional cases, Richard Hamilton evolved an algorithm called Ricci flow. In Ricci flow, a class of self-similar solutions called gradient solitons. Studing of such kink solution is playing an important role in solving Poincaré conjecture. In 2015, Ovidiu Munteanu and Jiaping Wang shown an algorithm to estimate the Riemann, Ricci curvature and scalar curvature on 4-dimansional gradient solitons in Ricci flow. In this survey, I would introduce some early results in gradient solitons and explore the details in Ovidiu Munteanu and Jiaping Wang’s paper in 4-dimensional shrinking solitons.371442 bytesapplication/pdf論文公開時間: 2021/8/2論文使用權限: 同意無償授權瑞曲流孤立子Ricci flowSoliton瑞曲流孤立子A Survey on Gradient Ricci Solitonsthesis10.6342/NTU201601353http://ntur.lib.ntu.edu.tw/bitstream/246246/276834/1/ntu-105-R03221006-1.pdf