2012-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/683515摘要:中孔洞材料因為具有高表面積(ca. 1000 m2/g)、可控制的形態(薄膜、奈米粒子等)、表面易修飾官能基(NH2 group、SH group、COOH group等)以及良好的生物相容性等特性,在生物醫學以及催化方面有很高潛力的應用性。此項計畫重點在於合成新型多功能中孔洞奈米材料(包含氧化矽、氧化鈦、碳等),並基於本實驗室過去累積經驗,針對目前人類所面臨的二大課題(癌症治療和再生能源開發),提供新的材料以解決問題。生醫應用上,我們著重高規則孔洞結構的新型中孔洞氧化鈦奈米粒子(MTNs)做為藥物載體並應用於攝護線癌症的治療。我們將利用氧化鈦具有對磷酸根高親和性的特質,加上規則性中孔洞所得到的高表面積,此外,我們將選擇適當的適配體(aptamer)做為控制藥物釋放的閘門,利用環境pH值等調控適配體的構形達到藥物的控制釋放。最後我們將實際使用對攝護線癌細胞有標靶作用的適配體及抗攝護線癌的藥物,並量測其整體藥物釋放系統的細胞外和細胞內的制放實驗。 再生能源應用上,我們的目標是希望能夠將木質纖維素轉換成5-羥甲基糠醛(HMF),以使用的催化劑分為兩個方向。(1)在DMSO做為溶劑下,利用含有強酸和離子液離官能基化的中孔洞碳奈米粒子做為異相催化劑,達到一步驟纖維素到HMF的反應。(2)在水溶液做為溶劑下,利用酵素嵌入型中孔洞氧化矽奈米材料為催化劑,達到常溫常壓下將纖維素轉成果糖。我們將首先合成出這些催化劑並且調查這兩個不同做法的最佳的反應條件,最後探討不同的催化劑對產率及專一性的影響。<br> Abstract: Because of their high surface area (around 1000 m2/g), controllable morphology (nanoparticle and thin films), tunable surface functionalities (amino group, thiol group, carboxylic group), and high biocompatibility, mesoporous materials have high potential in many fields including biomedicine and catalysis. Based on the experience and capability of our laboratory, this three-years project will focus on the synthesis of novel mesoporous nanomaterials for solving two of the biggest problems nowadays: cancer therapy and renewable energy. In the biomedical applications, we will focus on the synthesis of new highly ordered mesoporous titania nanoparticles (MTNs) and the utilization of MTNs as a durg nanovehicle for deliverying prostate cancer therapy. We will use the unique features of MTNs (i.e., the affinity between titania and phosphate and high surface area); furthermore, we will select suitable aptamers as gatekeepers of MTNs for pH-controlled drug release. Finally, the aptamer-gated MTNs will be used extra- and intracellular drug delivery systems.中孔洞奈米粒子藥物控制釋放癌症治療木質纖纖素轉換葡萄糖5-羥甲基糠醛 。Mesoporous nanoparticlesdrug delivery systemscancer therapylignocellulosic conversionglucose5-HMF.多功能中孔洞奈米材料的製備及在生醫和生質能源上的應用