詹長權臺灣大學:職業醫學與工業衛生研究所莊校奇Chuang, Hsiao-ChiHsiao-ChiChuang2007-11-282018-06-292007-11-282018-06-292005http://ntur.lib.ntu.edu.tw//handle/246246/59823目的:為了瞭解寺廟中微粒濃度以及微粒中多環芳香烴化合物濃度分佈狀況,和寺廟中微粒粒徑以及微粒中多環芳香烴化合物與血管內皮細胞產生發炎反應以及內皮細胞功能異常之間的關係。 方法:本研究利用十階微孔均勻沉積衝擊器採集台灣台北寺廟中微粒,以氣相層析質譜儀分析微粒中16種多環芳香烴化合物濃度,並且以濃度25和50 µg/mL寺廟微粒暴露於人類冠狀動脈內皮細胞4小時,利用酵素免疫分析法分析人類冠狀動脈內皮細胞釋放的發炎前驅物interleukin-6(IL-6)、以及和內皮細胞功能異常有關的指標nitric oxide(NO)、endothelin-1(ET-1)濃度變化情形。 結果:寺廟中PM10-1.0、PM1.0-0.1和PM0.1的質量濃度各別為28.9 ± 6.7、121.0 ± 37.3和5.2 ± 3.2 µg/m3,其中PM1.0/PM10的比率為81.2 ± 5.3 %。PM10-1.0、PM1.0-0.1、PM0.1中總多環芳香烴化合物平均濃度各別為0.080 ± 0.002、0.224 ± 0.003和0.011 ± 0.001 µg/m3。在PM10-1.0、PM1.0-0.1和PM0.1中多環芳香烴化合物皆以5-ring的物種濃度百分比最高,濃度百分比各別為55.4、40.7和45.7 %。此外,在PM10-1.0、PM1.0-0.1和PM0.1中,5-ring的多環芳香烴化合物以benzo[b]fluoranthene的濃度為最高。冠狀動脈內皮細胞暴露於濃度50 µg/mL的寺廟微粒後,IL-6、NO、ET-1釋放的濃度為最高。在50 µg/mL的微粒濃度下,冠狀動脈內皮細胞於PM1.0-0.1產生IL-6、ET-1產生的濃度最高,以PM0.1產生NO產生的濃度最低。在PM1.0下,NO、ET-1和16種多環芳香烴化合物濃度呈現良好的負相關,R2各別為0.58和0.68。尤其是anthracene(R2=0.48)、pyrene(R2=0.47)、benzo[b]fluoranthene(R2=0.51)和benzo[a]pyrene(R2=0.42)皆與NO濃度呈現良好的負相關。此外,naphthalene(R2=0.89)、acenaphthylene(R2=0.79)、acenaphthene (R2=0.82)、fluorene(R2=0.75)、anthracene (R2=0.97)和dibenz[a,h]anthracene(R2=0.71) 皆與ET-1濃度呈現良好的負相關。 結論:寺廟微粒分佈集中於PM1.0,微粒中多環芳香烴化合物以5-ring的物種濃度百分比最高,尤其是5-ring的benzo[b]fluoranthene幾何平均濃度最高。此外,寺廟微粒的粒徑大小、微粒中多環芳香烴化合物皆會引起人類冠狀動脈內皮細胞產生發炎反應與內皮細胞功能異常的現象。Objective:To investigate size distribution and concentrations of particulate and particle-phase polycyclic aromatic hydrocarbons(PAHs) measured in the temple(temple particles) and to determine the inflammatory reaction and endothelial dysfunction related to them. Methods:We used Micro-Orifice Uniform Deposit Impactors(MOUDI) to collect particles from a major temple in Taipei, Taiwan. The concentrations of particulte-phase PAHs were dtermined by using a gas chromatography/mass spectrometry(GC/MS) method. Human coronary artery endothelial cells(HCAEC) were exposured to particle extracts at 25 and 50 µg/mL for 4 hr, and interleukin-6(IL-6), nitrite oxide(NO), and endothelin-1(ET-1) concentrations in the basal medium were measured by the enzyme-link immunosorbent assay(ELISA) method. Results:Mean concentrations of PM10-1.0, PM1.0-0.1 and PM0.1were 28.9 ± 6.7, 121.0 ± 37.3 and 5.2±3.2 µg/m3, respectively. The ratio of PM1.0/PM10 were 81.2 ± 5.3%. Mean concentrations among total PAHs in PM10-1.0, PM1.0-0.1 and PM0.1were 0.080 ± 0.002, 0.224 ± 0.003 and 0.011 ± 0.001 µg/m3, respectively. Percentage among five-ring PAHs in PM10-1.0, PM1.0-0.1 and PM0.1 were 55.4, 40.7 and 45.7%, respectively. The benzo[b]fluoranthene concentrations were the highest among all 16 PAHs in PM10, PM1.0 and PM0.1. 50 µg/mL PM induced more IL-6, NO and ET-1 release than 20 ug/mL PM. Among thre PM fractions, PM1.0-0.1 stimulation resulted in higher IL-6 and ET-1 production than PM10-1.0 and PM0.1. By contrast, PM0.1 stimulation resulted in lower NO production than PM10-1.0 and PM1.0-0.1. Total PAHs were negatively associated with NO(R2=0.58) and ET-1(R2=0.68) production, respectively. For PAHs in PM1.0, anthracene(R2=0.48), pyrene(R2=0.47), benzo[b]fluoranthene(R2=0.51) and benzo[a]pyrene(R2=0.42) were negatively associated with NO production. By contrast, a naphthalene(R2=0.89), acenaphthylene(R2=0.79), acenaphthene(R2=0.82), fluorene(R2=0.75), anthracene (R2=0.97) and dibenz[a,h]anthracene(R2=0.71) were negatively associated with ET-1 release. Conclusions:Our study found that major size of temple particles was PM1.0. Particulate PAHs in the temple was mainly composed of five-ring PAHs, and benzo[b]fluoranthene was the major component of five-ring PAHs. Moreover, size and PAHs of temple particles were both important factors related to inflammatory reaction and endothelial dysfunction by HCAEC.目 錄 中 文 摘 要 i Abstract iii 目 錄 v 表 目 錄 viii 圖 目 錄 ix 第1章 前言 1 1.1 研究緣起 1 1.2 研究目的 1 1.3 研究假說 2 第2章 文獻回顧 3 2.1 流行病學研究 3 2.2 動物實驗 6 2.3 體外暴露實驗 8 2.4 拜香懸浮微粒特性 9 2.5 多環芳香烴化合物和心血管疾病 11 2.6 血管內皮細胞和細胞激素 12 2.6.1 血管內皮細胞 12 2.6.2 Interleukin-6(IL-6) 12 2.6.3 Nitric oxide(NO) 13 2.6.4 Endothelin-1(ET-1) 14 第3章 研究方法 15 實驗架構 15 3.1 寺廟中微粒採樣與分析 16 3.1.1 採樣位置 16 3.1.2 採樣時間 16 3.1.3 採樣方法 16 3.1.4 PAHs萃取與分析 17 3.1.5 QA/QC 19 3.2 細胞毒性分析 19 3.2.1 細胞培養 19 3.2.2 細胞微粒暴露 20 3.2.3 細胞存活率分析 21 3.2.4 發炎、內皮細胞功能異常指標分析 22 3.3 統計分析 23 第4章 研究結果 34 4.1 寺廟中微粒特性描述 34 4.1.1 寺廟中微粒濃度分佈 34 4.1.2 寺廟中微粒中PAHs濃度分佈 35 4.1.3 不同粒徑下16種PAHs分佈 35 4.2 寺廟中微粒對HCAEC的細胞毒性 37 4.2.1 寺廟微粒暴露與細胞存活率 37 4.2.2 寺廟微粒濃度、粒徑與IL-6、NO、ET-1之相關性 38 4.2.3 寺廟微粒中的PAHs與NO之相關性 39 第5章 討論 92 5.1 寺廟中微粒粒徑與PAHs的關係 92 5.1.1 寺廟中微粒粒徑分佈 92 5.1.2 寺廟中微粒粒徑與PAHs濃度分佈 93 5.1.3 16種PAHs粒徑分佈 95 5.2 寺廟中微粒與HCAEC的細胞毒性 95 5.2.1 寺廟微粒濃度與細胞毒性之相關性 95 5.2.2 寺廟微粒粒徑與細胞毒性之相關性 96 5.2.3 寺廟微粒中的PAHs與NO之相關性 97 5.3 研究限制 99 5.4 結論與建議 100 5.4.1 寺廟中微粒特性描述 101 5.4.2 寺廟中微粒暴露對HCAEC毒性描述 101 5.4.3 寺廟中微粒對人體健康的影響 102 5.4.4 未來研究之建議 104 附錄一 濾紙秤重 108 附錄二 PAHs前處理 109 附錄三 不同粒徑寺廟微粒中16種PAHs濃度(mean ± SD) 111 附錄四 細胞培養標準操作程序 112 附錄五 不同粒徑下HCAEC暴露於濃度25和50 µg/mL所釋放細胞激素 116 附錄六 Interleukin 6(IL-6)分析法 117 附錄七 Nitric Oxide(NO)分析方法 121 附錄八 Endothelin-1(ET-1)分析方法 126 參考文獻 1301457752 bytesapplication/pdfen-US寺廟懸浮微粒多環芳香烴化合物冠狀動脈內皮細胞細胞激素IL-6一氧化氮內皮素-1TempleParticulate matter(PM)Polycyclic aromatic hydrocarbons(PAHs)Human coronary artery endothelial cell(HCAEC)Interleukin-6(IL-6)Nitrite oxide(NO)Endothelin-1(ET-1)寺廟中微粒對人類冠狀動脈內皮細胞發炎反應與內皮細胞功能異常之研究Effects of Temple Particles on Inflammatory Reaction and Endothelial Dysfunction by Human Coronary Artery Endothelial Cellthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/59823/1/ntu-94-R92841005-1.pdf