張慶源臺灣大學:環境工程學研究所黃怡華Huang, Yi-HuaYi-HuaHuang2007-11-292018-06-282007-11-292018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/62671本研究之目的在於以臭氧結合超重力旋轉填充床氣液接觸器(HGRPB)處理界面活性劑含萘(NAP)之水溶液,並探討界面活性劑對於臭氧質傳及氧化特性之影響。 本實驗於半批次液體循環式之操作下,進行界面活性劑之臭氧化實驗,實驗結果顯示SDS不會與臭氧反應,而Brij 30會與臭氧進行親電子之反應,但兩者皆不容易被臭氧礦化成二氧化碳及水。 半批次臭氧質量傳輸實驗中,SDS之濃度由0.00164 增加至0.1M,溶解性臭氧濃度由2.32 下降至0.49 mg/L。SDS濃度未達臨界微胞濃度(CMC),提高SDS濃度會使溶解性臭氧濃度下降其下降趨勢較SDS濃度達大於等於CMC值之溶解性臭氧濃度大。當SDS之濃度未達CMC值,臭氧於水相中之自我降解常數與界面活性劑之濃度之關係式為 。 超重力系統連續式NAP之氣提實驗中,添加界面活性劑之氣提效果較差,而界面活性劑濃度達CMC值時,NAP之氣提效率與界面活性劑之濃度(大於CMC)及NAP之濃度關係不明顯,其氣提之效率為4-10%,變化不大,推測僅與氣體之進流流量有關。 超重力系統連續式NAP之臭氧化實驗中,不同之界面活性劑水溶液中溶解相同劑量之NAP之臭氧化實驗,溶解於SDS水溶液中之NAP較溶解於Brij 30水溶液較易臭氧化。而不同Brij 30濃度下溶化相同之NAP量之臭氧化實驗,當Brij 30 濃度100 mg/L增加至1000 mg/L,臭氧對NAP之去除率由82.26變為36.67%。相同Brij 30濃度下溶化不同NAP的量之臭氧化實驗,當NAP之濃度由10 mg/L增加至100 mg/L,NAP之去除率由98.35%下降至82.26%。由於HGRPB填充床之體積過小,導致臭氧與NAP之接觸時間太短,臭氧與NAP之反應不完全,且因Brij 30會與臭氧進行反應,而與NAP競爭臭氧,因此當Brij 30或NAP之濃度提高,NAP臭氧化之去除率降低。 將經臭氧化兩小時之界面活性劑SDS及Brij 30溶液回收再增溶NAP之實驗,100 mg/L 之SDS 仍可溶解35 mg/L之NAP,1000 mg/L 之 Brij 30仍可溶化120 mg/L之NAP,說明界面活性劑有再回收使用之可能性。The objective of this study is to examine the ozonation of naphthalene (NAP) and surfactants with high-gravity rotating packed bed (HGRPB). Furthermore, the influences of surfactants on mass transfer and the ozonation performance were investigated in this study. The HGRPB for semi-batch operation with recycle liquid is employed to the ozonation of surfactants in this part of experiment. The results showed that sodium dodecylsulfate (SDS) reacted with ozone insignificantly but polyoxyethylene (4) lauryl ether (Brij 30), which reacted with ozone via the electrophilic addition reaction. However, it is difficult to mineralize both SDS and Brij 30 into carbon dioxide (CO2) and water (H2O) by means of ozonation. Regarding the mass transfer experiments, the results showed that dissolved liquid ozone increased from 2.32 to 0.49 mg/L with the decrease of the SDS concentration from 0.00164 to 0.1M. The self-decomposition rate constant of ozone depended on the concentration of SDS in aqueous phase is . The results of HGRPB of continuous flow operation to strip naphthalene from aqueous solution showed that the efficiency of the stripping is better in deionized water than in surfactants-containing solution (above CMC). When the concentration of surfactants is above CMC, the concentrations of the surfactant and NAP affect the removal efficiency of stripping. The stripping efficiency may be related to the gas flow rate. The efficiency of ozonation of NAP dissolving in the SDS solution is better than that in the Brij 30 solution with same concentration of NAP. The removal efficiencies of NAP decreased from 98.3 to 82.36 % as the concentration of Brij 30 was from 100 to 1000 mg/L. The concentration of NAP increased from 10 to 100mg/L, while the efficiency of ozonation decrease from 82.26 to 35.67%. The contacting volume of HGRPB is 185 mL, in which the contact time is too short for ozone to completely react with NAP. Due to the comsumption of ozone by Brij 30, the higher concentrations of Brij 30 and NAP decreased the removal efficiency of NAP. The surfactant-containing solution after ozonation and can further re-dissolve NAP of 35 (SDS of 100 mg/L) and 120 mg/L (Brij 30 of 1000 mg/L), respectively. Therefore, it is feasible to reuse the surfactant-containing solutions after ozonation.目錄 中文摘要 ------------------------------------------------------------------- Ⅰ 英文摘要 ------------------------------------------------------------------ Ⅲ 目錄 ------------------------------------------------------------------------ Ⅴ 表目錄 -------------------------------------------------------------------- X 圖目錄 ----------------------------------------------------- XII 符號說明 ---------------------------------------------------------------- XVI 第一章 緒論 -------------------------------------------------------------- 1 1.1 研究緣起 ---------------------------------------------------------- 1 1.2 研究目的 ---------------------------------------------------------- 3 第二章 文獻回顧 -------------------------------------------------------- 6 2.1 環芳香族碳氫化合物之基本性質及污染現況 ------------- 6 2.1.1 環芳香族碳氫化合物(PAHs)之之物理化學特性 -- 6 2.1.2 PAHs之毒理特性 -------------------------------------- 7 2.1.3 PAHs在環境中之分佈 ------------------------- 7 2.1.4 超重力技術之特點及應用 --------------------------- 10 2.1.5 相關法規之規定 ----------------------------------------- 12 2.2界面活性劑之定義與簡介 ------------------------------------- 13 2.2.1界面活性劑的基本性質 --------------------------------- 13 2.2.2界面活性劑微胞相及水相之關係 ---------------------- 18 2.2.3界面活性劑對氧氣質量傳送之影響 ------------------ 20 2.2.4面活性劑在污染整治的應用實例 --------------------- 21 2.3 臭氧之基本性質與反應機制 ---------------------------------- 23 2.3.1 臭氧之自解 ----------------------------------------------- 23 2.3.2 臭氧與有機物之反應 ---------------------------------- 27 2.3.3 萘與臭氧之反應 ----------------------------------------- 31 2.3.4 臭氧與界面活性劑之反應 ----------------------------- 34 2.4超重力旋轉填充床之原理及應用 ---------------------------- 37 2.4.1 超重力工程技術之發展 -------------------------------- 37 2.4.2 超重力旋轉填充床氣液接觸氣之構造與原理 ------ 38 2.4.3 超重力旋轉填充床氣液接觸器之特性及其應用 --- 42 2.4.3.1 壓降之影響 ------------------------------------ 42 2.4.3.2 溢流現象 --------------------------------------- 42 2.4.3.3 液膜質量傳送係數 --------------------------- 43 2.4.3.4 氣膜質量傳送係數 --------------------------- 43 2.4.4 超重力旋轉填充床(HGRPB)氣液接觸器之應用 --- 44 第三章 實驗設備與方法 ---------------------------------------------- 46 3.1 實驗系統設備簡介 --------------------------------------------- 46 3.2 實驗儀器與藥品 ------------------------------------------------ 52 3.2.1 實驗儀器 ------------------------------------------------- 52 3.2.2 實驗藥品------------------------------------------------------ 55 3.3 實驗分析方法 ---------------------------------------------------- 56 3.3.1 氣相臭氧分析方法 --------------------------------- 56 3.3.2 液相臭氧分析方法 ----------------------------------- 57 3.3.3 總有機碳(Total Organic Carbon, TOC)實驗 ------- 59 3.3.4 高效率液相層析儀(high performance liquid chromatography, HPLC)實驗 ------------------------- 60 3.3.4.1 NAP原始物種之分析 ----------------------- 60 3.3.4.2 Brij 30之分析 -------------------------- 60 3.3.5 表面張力之分析 -------------------------------------- 61 3.4 前置實驗 -------------------------------------------------------- 61 3.4.1 氣體流量校正實驗 ------------------------------------- 61 3.4.2 液相臭氧分析儀校正實驗(外部校正) ------------- 62 3.5 界面活性劑對NAP之增溶效應實驗 ----------------------- 62 3.6 連續式操作之NAP氣提實驗 -------------------------------- 62 3.7 連續式操作之NAP臭氧化之實驗 -------------------------- 63 3.8 半批次/液體循環式操作之臭氧質量傳送試驗 ----------- 64 3.9 半批次之臭氧質量傳送實驗 ---------------------------------- 65 第四章 結果與討論 ----------------------------------------------------- 67 4.1界面活性劑之背景實驗 ------------------------------------- 67 4.1.1界面活性劑對NAP之增溶效應 ------------------- 67 4.1.2 界面活性劑臭氧化之實驗 ------------------------------ 71 4.1.2.1 SDS臭氧化分解 ----------------------------- 71 4.1.2.2 Brij 30臭氧化分解實驗 ------------------- 75 4.2 臭氧於界面活性劑中之行為特性 ---------------------------- 82 4.2.1 SDS水溶液之液體表面質量傳輸 ------------------- 82 4.2.2界面活性劑溶液中臭氧自我降解常數及溶質分佈係數--------------------------------------------------------------- 88 4.3 NAP之氣提現象 ------------------------------------------------- 99 4.4 NAP臭氧化實驗 ------------------------------------------------ 107 4.5 界面活性劑臭氧化後對NAP之再增溶效應 -------------- 120 第五章 結論與建議 --------------------------------------------------- 121 5.1結論 ----------------------------------------------------------------- 121 5.2 建議 --------------------------------------------------------------- 123 參考文獻 ------------------------------------------------------------------ 124 附錄 ------------------------------------------------------------------------ 132 A-1 氣體流量校正曲線 ---------------------------------------------- 133 A-2液相臭氧分析儀校正 ------------------------------------------- 134 A-3 檢量線數據 ------------------------------------------------------- 135 A-4 NAP之HPLC分析圖譜 --------------------------------------- 136 A-5 Brij 30及actone 之全波長掃瞄 ----------------------------- 136 A-6 界面活性劑水相中臭氧自我降解常數之線性迴歸 ------- 137 表目錄 List of Tables Table 2.1 The distribution of PAHs in the soil of tollbooth near the high way. 9 Table 2.2 Basic physicochemical properties of naphthalene. 11 Table 2.3 Characteristics of surfactants used in this study. 17 Table 2.4 The half-life of ozone in water in different pH value. 25 Table 2.5 Typical initiator, promoters, and inhibitors for decomposition of ozone by radical-type chain reaction. 30 Table 2.6 Comparison of conventional packed bed and high-gravity rotating packed bed gas-liquid contactors. 40 Table 3.1 Specification of HGRPB contactors used in this study. 48 Table 4.1 Variation of total organic carbon (TOC) and surface tension (ST) in ozonation of SDS. 72 Table 4.2 Variation of total organic carbon (TOC) and surface tension (ST) after ozonation with recycle flow. 78 Table 4.3 Variation of total organic carbon (CTOC) in different initial concentration of Brij 30 in the ozonation of Brij 30 with continuous flow. 79 Table 4.4 Variation of dissolved ozone in different concentration of ozone and SDS with semi-batch operation. 85 Table4.5 The mass transfer constant (kLa) of ozone in different concentration of SDS with semi-batch operation. 86 Table 4.6 Volume fractions of the micelles in the solution for different concentrations of SDS. 92 Table 4.7 The self-decomposition reaction rate constant (kd,w)of ozone in different concentration (below CMC) of SDS with semi-batch operation. 93 Table 4.8 The relationship of kd,w and Km in different concentraction (above CMC) of SDS and ozone. 97 Table 4.9 The effects in different operation conditions by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 100 Table 4.10 The effects in different operation conditions by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 108 圖目錄 List of Figure Figure 1.1 Schematic diagram of HGRPB combine ozone treat the soil and groundwater was polluted by PAHs. 4 Figure 1.2 Flow chart for this study. 5 Figure 2.1 Schematic diagram of the soluble and surface tension profile of surfactant. 15 Figure 2.2 The structure of sodium dodecylsulfate (SDS). 16 Figure 2.3 The structure of polyoxyethylene (4) lauryl ether (Brij 30). 16 Figure 2.4 Reaction mechanisms for ozone decomposition process. 26 Figure 2.5 The extreme forms of resonance structure in ozone molecules. 28 Figure 2.6 Reactions of OH.radical with an organic pollutant. 29 Figure 2.7 Ozonation pathway of naphthalene: the case of initial attack by ozone dipolar cycloaddition on the 1,2 bond of naphthalene. 32 Figure 2.8 Ozonation pathway of naphthalene: other possible initial attack. 33 Figure 2.9 Schematic of ozonation of ethylene glycmono-n-octyletherand. 36 Figure 2.10 Description of high-gravity rotating packed-bed gas-liquid contactor. 41 Figure 3.1 The experimental apparatus sketch system A (continuous flow). 49 Figure 3.2 Experimental apparatus for ozonation: system B (semi-batch with recycled liquid; ozone feeded in HGRPB). 50 Figure 3.3 The experimental apparatus sketch (Semi-batch). 51 Figure 4.1 Enhanced solubilization of Naphthalene in liquid phase at various concentration of SDS. 69 Figure 4.2 Variations of dissolved ozone(CAlb,t)and ORP of deionized water and SDS aqueous solution with time in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 74 Figure 4.3 HPLC chromatogram for Brij 30 after ozonation in high-gravity rotating packed bed gas-liquid contactor with recycle flow. 76 Figure 4.4 HPLC chromatogram for Brij 30 after ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 77 Figure 4.5 Possible pathways of ozonation of Brij 30. 81 Figure 4.6 Schematic diagram of experimental system for the mass transfer of ozone. 87 Figure 4.7 Variation of dissolved ozone in different concentration of SDS and ozone at N = 400 rpm with semi-batch operation. 89 Figure 4.8 Log reaction of ozone self-decomposition constant (kd,w-0.000145) versus log concentration of SDS (Csur.). kd,w = 0.000145 + aCsurb, slope = b, intercept = loga Y = 0.6738X – 0.3002, R2 = 0.9755. 94 Figure 4.9 Schematic diagram of ozone self-decomposition in micelle. 96 Figure 4.10 The effects of various NAP concentration by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 102 Figure 4.11 The effects of various Brij 30 concentrations on the removal of NAP by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 10 mg/L. 103 Figure 4.12 The effects of various Brij 30 concentrations on the removal of NAP by stripping in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 50 mg/L. 104 Figure 4.13 The diagram of surfactant by stripping. 106 Figure 4.14 The effects of various ozone concentration by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 109 Figure 4.15 Variation 0f dissolved ozone(θALb,t) with time in different concentration of surfactant in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 111 Figure 4.16 The effects of various NAP concentration by ozonation in high-gravity rotating packed bed gas-liquid with continuous flow. 112 Figure 4.17 Variation 0f ORP with time in different concentration of naphthalene in high-gravity rotating packed bed gas-liquid contactor with continuous flow. 114 Figure 4.18 The effects of various Brij 30 concentrations on the removal of NAP by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 10 mg/L. 115 Figure 4.19 The effects of various Brij 30 concentrations on the removal of NAP by ozonation in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CNAP = 50 mg/L. 116 Figure 4.20 Variation 0f ORP with time in different concentration of Brij 30 in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CBrij 30 = 100 mg/L. 118 Figure 4.21 Variation 0f ORP with time in different concentration of Brij 30 in high-gravity rotating packed bed gas-liquid contactor with continuous flow, CBrij 30 = 300 mg/L. 119en-US萘超重力旋轉填充床臭氧多環芳香族碳氫化合物high-gravity rotating packed bednapthaleneozo以超重力臭氧反應器處理含萘及界面活性劑水溶液之研究The Study on Ozonation of Naphthalene and Surfactants Containing Solutions with High-Gravity Rotating Packed Bedthesis