電機資訊學院: 資訊工程學研究所指導教授: 呂育道陳賢誠Chen, Hsien-ChengHsien-ChengChen2017-03-032018-07-052017-03-032018-07-052016http://ntur.lib.ntu.edu.tw//handle/246246/275485最小平方蒙地卡羅法是一種美式選擇權的評價方法。此方法通常計算量很大,需要花費許多運算時間,才能得出最終價格。在本篇論文中,我們以資料平行(data parallelism)的方式,將原本最小平方法蒙地卡羅法依路徑,分為許多互相獨立的組。在最小平方法的部分,我們採用QR分解進行求解。我們在GPU上使用CUDA針對美式賣權實作此平行方法,並且與在CPU上的循序版本做比較。 數值實驗的結果顯示當所分的組越多時,所花的執行時間就越少,但相對找出來的賣權價格也會越高估。Least-squares Monte Carlo method (LSM) is a method for pricing American options. The approach can give accurate option prices but it is computation intensive. In this thesis we use data–parallelism techniques to accelerate LSM with GPUs; that is, we will divide the computation paths into mutually independent groups. As for the least-squares calculation, QR decomposition is employed. The program is implemented by using CUDA to run on GPUs. The numerical results are compared with a sequential program’s on CPUs. The experiment results show that the more groups are created, the less time it takes to execute.論文使用權限: 不同意授權最小平方蒙地卡羅法資料平行圖型處理器統一計算架構Least-squares Monte Carlodata parallelismGraphic Processing Unit (GPU)Compute Unified Device Architecture (CUDA)使用圖型處理器加速最小平方蒙地卡羅法Using GPU to Accelerate the Least-Squares Monte Carlo Methodthesis10.6342/NTU201600229