蘇金佳臺灣大學:機械工程學研究所何柏慶Ho, Po-ChingPo-ChingHo2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61334在大型地下高壓電纜洞道內,當纜線在輸送電流時,由於本身存在電阻的緣故,損耗之能量會以熱能的形式散失於洞道之內,故必須仰賴適當的冷卻系統帶走熱量以降低洞道內空氣的溫度,才能維持安全及舒適度。 本研究根據工程實績,以半圓形洞道為主體,用加熱器模擬高壓電纜,並採用PE冷水管實行間接冷卻。在實驗過程中量測洞道內空氣溫度、冷水管溫度及加熱器表面溫度等,並在實驗結束後分析洞道內空氣的縱向溫度分佈、剖面溫度分佈及重要熱傳參數Nu(Nusselt number)和Ra(Rayleigh number)等。研究中所探討的參數有冷水的總流量(8 LPM、12 LPM及16 LPM)、冷水管的管數(四管和單管)、單一冷熱管實驗(加熱器分別和不同位置之單一冷水管組合)並改變加熱器表面溫度(100℃至250℃),整個實驗Ra的範圍為4.41 x 104至8.19 x 104。 實驗結果顯示,當冷水管數為四管時,冷水流量大者在洞道前半段所造成的縱向溫度梯度較大,冷水流量小者,在洞道內縱向整體的溫度分佈較為平均,並由剖面溫度圖可觀察出洞道內在靠近半圓壁面右上方有一溫度較高的區域,右下方接近半圓壁面的最低點則有ㄧ比較低溫的區域。且當冷水管數為四管時,在每一個斷面X處,冷水流量為16LPM時的 值最大,8LPM時的 值最小,且冷水流量越大,則 越大,冷水流量越小,則 越小。單一冷熱管實驗時,當加熱器表面溫度提高,除了洞道溫度提高外,溫度變化亦較為劇烈,也較不均勻。當加熱器表面溫度由100℃升高為150℃時, 由4.7x104提升至5.2x104,但 只從10.1增加到10.3左右,之後當表面溫度提升至200℃和250℃時, 明顯提升。又在單一冷熱管實驗時,則冷水管位於加熱器上方時所造成的 和 最大。In the large underground cables tunnel, the part of the electric energy carried by the cables will dissipate and transform into heat. Therefore, an effective cooling system is demanded to take the heat away for decreasing the air temperature in the tunnel as well as keeping a safe and pleasant environment. In this work a semicircular tunnel were used as the main body to simulate the underground tunnel, within which an electrical heater could generate heat. Four PE water tubes were set to perform indirect water cooling. The air temperature distribution in the tunnel, the temperature change on the water tubes and the heater were all measured and analyzed. Both the non-dimensional variables Nusselt number, Nu, and Rayleigh number, Ra, were also calculated. The effect of the cold water flow rate(8LPM, 12LPM and 16LPM), number of cold water tube(four and single), the relative positions of the single heater and cold water tubes, and the surface temperature of the heater(from 100℃ to 250℃)were discussed. The whole study was conducted for the Rayleigh number between 4.41 x 104 and 8.19 x 104. In the experiment of four cold water tubes, the result shows that the larger the flow rate of cold water is, the larger the axial temperature gradient in the front section of the tunnel gets. However, the uniform air temperature in axial direction was obtained when the flow rate of cold water getting smaller. By the temperature distribution profile, a local relative high and low temperature area near the upper-right and lower-right of the semicircular wall of the tunnel can be found. In each cross-section in the axial direction, is maximized and minimized with the water flow rate at 16LPM and 8LPM, respectively, while rises in accordance with the increasing water flow rate. In the study of single heater and cold water tube, the tunnel temperature rises sharply at first and becomes uneven with increasing surface temperature of heater. rises to 5.2x104 from 4.7x104 when the surface temperature of heater is increased from 100℃ to 150℃. However, a large change in Rayleigh number(from 4.7 x 104 to 5.2 x 104) only makes small change in (from 10.1 to 10.3). If the surface temperature of heater is raised to the range of 200℃ and 250℃, increases obviously. In addition, highest and can be obtained by arranging the cold water tube directly above the heater.內容 頁次 中文摘要..................................................I 英文摘要.................................................II 目錄.....................................................IV 表目錄...................................................VI 圖目錄..................................................VII 符號說明................................................XII 第一章 緒論...............................................1 1.1 研究背景..............................................1 1.2 研究動機..............................................1 1.3 研究目的..............................................2 第二章 文獻回顧...........................................3 2.1 單管的自然對流研究....................................3 2.2 封閉空間中含線性熱源之自然對流研究....................4 2.3 洞道內冷卻系統之性能研究..............................6 第三章 實驗設備、方法及流程..............................10 3.1 實驗設備.............................................10 3.1.1 洞道主體...........................................10 3.1.2 冰水循環系統.......................................10 3.1.3 加熱元件...........................................12 3.1.4 電控設備...........................................12 3.1.5 量測設備...........................................12 3.2 實驗的操縱變因.......................................13 3.3 實驗操作流程.........................................13 3.4 實驗數據分析.........................................14 第四章 結果與討論........................................18 4.1 總冰水流量在測量管數為四管時之效應...................18 4.1.1 總流量8LPM時洞道內的溫度變化.......................18 4.1.2 總流量12LPM時洞道內的溫度變化......................22 4.1.3 總流量16LPM時洞道內的溫度變化......................23 4.1.4 不同冰水流量下的溫度變化比較.......................24 4.1.5 不同冰水流量實驗下洞道內壁面的溫度變化.............24 4.2 冰水管數為四管時洞道內的熱傳分析.....................25 4.3 冰水管數為單管時洞道內剖面的溫度分佈及熱傳特性.......27 4.3.1 單一冷熱管洞道內的溫度變化.........................27 4.3.2 單一冷熱管洞道內熱傳分析...........................28 第五章 結論與建議........................................30 5.1 結論.................................................30 5.2 建議.................................................31 參考文獻.................................................32 附表.....................................................36 附圖.....................................................43 附錄A 實驗參數表.........................................90 附錄B 溫度校正表.........................................94 附錄C 誤差分析...........................................96 表目錄 內容 頁次 表1.1 冷卻系統比較表【2】................................36 表1.2 冷卻系統比較表【2】................................37 表2.1 冰水管為驅散式安排(dispersed layout)或集中式安排(concentrated layout)下洞道內所量得空氣的最高溫和最低溫溫度差【31】...............................................38 表2.2 洞道內壁面和空氣間的對流熱阻(℃.cm2 / W)【31】...38 表2.3日本地下電纜冷卻系統方式【33】......................39 表3.1 斷面溫度量測點座標示意圖...........................40 表4.1 不同流量下,平均剖面溫度沿X變化之關係式............42 表4.2 和 之間的經驗公式..................................................................42 圖目錄 內容 頁次 圖1.1 345kV交連PE電纜剖面示意圖【1】........................................................43 圖1.2 洞道內冰水管間接冷卻系統圖【1】.........................................................43 圖1.3 洞道內冷風機冷卻系統圖【1】.................................................................44 圖1.4 線槽內冰水管間接冷卻系統圖【1】..........................................................44 圖2.1 不同徑向方向上溫度 和離開表面距離 之變化【6】.............................45 圖2.2 (a)相同溫差下, 隨 的變化。(b)等溫和等熱通量橢圓管之間的 比較【10】................................................................................................45 圖2.3 橢圓管的傾斜角和 的關係【10】........................................................46 圖2.4 有牆壁限制下等溫水平圓柱的自然對流實驗架構【13】..........................46 圖2.5 當 隨 變化下 的影響【13】.....................................................47 圖2.6 兩垂直牆壁中間水平加熱圓柱周圍的流場(a) =3×104, =1.5(b) =3×104, =3【13】.......................................................................47 圖2.7 當 隨 變化下 的影響【13】.............................................48 圖2.8 當 隨 變化下 的影響【13】.............................................48 圖2.9 冷熱銅管實驗配置圖【17】......................................................................49 圖2.10 圓管內 隨圓管角度 曲線圖【17】...................................................49 圖2.11 圓管旋轉角度 示意圖【17】................................................................50 圖2.12 冷熱管之間的無因次溫度分佈【17】.....................................................50 圖2.13 半圓形實驗裝置【18】...........................................................................51 圖2.14 中間部分熱偶線的位置圖【18】............................................................51 圖2.15 在位置點8上的縱向無因次溫度分佈【18】...........................................52 圖2.16 在熱壁面上 的分佈【18】................................................................52 圖2.17 在不同傾斜角度γ時,剖面的流線和溫度分佈(黑色:高溫,白色:中 溫,灰色:低溫)【18】............................................................................53 圖2.18 傾斜角度γ對 的效應【18】.............................................................53 圖2.19 封閉空間內無因次溫度 隨時間的變化【18】.......................................54 圖2.20 傾斜角度γ對 的效應【18】.............................................................54 圖2.21 數值模型的空間座標和設計【23】.........................................................55 圖2.22 熱源長寬分別為ax=1、ay=1時 的變化【23】......................................55 圖2.23 熱源長寬分別為ax=1、ay=2時 的變化【23】......................................56 圖2.24 熱源長寬分別為ax=1、ay=4時 的變化【23】......................................56 圖2.25 實驗配置圖和座標系統(H1=3D,H2=4D)【26】.....................................57 圖2.26 (a)110 kV水冷式充油電纜架構圖(b)剖面圖(單位:mm)【30】.........57 圖2.27 冰水管為驅散式(Dispersed layout)和集中式(concentrated layout)之示 意圖【31】..............................................................................................58 圖2.28 冰水管為驅散式(Dispersed layout)和集中式(concentrated layout)所得 到的溫度分佈【31】...............................................................................58 圖2.29 洞道內空氣、冷卻水及土壤之溫度分佈圖【31】.....................................59 圖2.30 洞道內空氣溫度分佈曲線圖【1】...........................................................59 圖2.31 洞道內空氣平均溫度分佈曲線圖【36】...................................................60 圖2.32 洞道內空氣平均溫度分佈曲線圖【36】...................................................60 圖2.33 裝置座標及溫度量測點示意圖【5】......................................................61 圖2.34 =0.218處空氣溫度之分佈(8LPM4管)【5】................................61 圖3.1 實驗系統循環圖......................................................................................62 圖3.2 實驗設備外觀圖......................................................................................62 圖3.3 小型氣冷式冰水主機...............................................................................63 圖3.4 恆溫蓄水槽.............................................................................................64 圖3.5 補給水裝置圖..........................................................................................64 圖3.6 分流管配置圖..........................................................................................65 圖3.7 PE冰水管.................................................................................................66 圖3.8乾式棒狀加熱器.......................................................................................66 圖3.9 自耦變壓器.............................................................................................67 圖3.10 斷面熱偶溫度線....................................................................................67 圖3.11 座標和熱偶線位置示意圖......................................................................68 圖3.12 溫度分佈範圍座標示意圖......................................................................69 圖4.1 Z=0.044處,縱向空氣溫度分佈(四管、8LPM).......................................70 圖4.2 Z=0.24處,縱向空氣溫度分佈(四管、8LPM)..........................................70 圖4.3 Z=0.437處,縱向空氣溫度分佈(四管、8LPM)........................................71 圖4.4 Z=0.633處,縱向空氣溫度分佈(四管、8LPM)........................................71 圖4.5 在X=0.1處剖面溫度分佈圖(四管、8LPM)...........................................72 圖4.6 在X=0.5處剖面溫度分佈圖(四管、8LPM)...........................................72 圖4.7 在X=0.9處剖面溫度分佈圖(四管、8LPM)...........................................73 圖4.8 Z=0.044處,縱向空氣溫度分佈(四管、12LPM)......................................73 圖4.9 Z=0.24處,縱向空氣溫度分佈(四管、12LPM)........................................74 圖4.10 Z=0.437處,縱向空氣溫度分佈(四管、12LPM)....................................74 圖4.11 Z=0.633處,縱向空氣溫度分佈(四管、12LPM)....................................75 圖4.12 在X=0.1處剖面溫度分佈圖(四管、12LPM)........................................75 圖4.13 在X=0.7處剖面溫度分佈圖(四管、12LPM)........................................76 圖4.14 Z=0.044處,縱向空氣溫度分佈(四管、16LPM)....................................76 圖4.15 Z=0.437處,縱向空氣溫度分佈(四管、16LPM)....................................77 圖4.16 在X=0.1處剖面溫度分佈圖(四管、16LPM)........................................77 圖4.17 在X=0.5處剖面溫度分佈圖(四管、16LPM)........................................78 圖4.18 不同冰水流量下剖面平均溫度沿X之變化(四管)..............................78 圖4.19 不同冰水流量下四根冰水管的平均表面溫度沿X之變化......................79 圖4.20 冰水流量16LPM實驗下,洞道內壁面溫度沿X之變化(四管).............79 圖4.21 冰水流量12LPM實驗下,洞道內壁面溫度沿X之變化(四管).............80 圖4.22 改變冰水流量時, 沿X之變化(四管)..........................................80 圖4.23 改變冰水流量時, 沿X之變化(四管)..........................................81 圖4.24 在不同斷面X處, 和 之間的關係(四管)...............................81 圖4.25 在不同斷面X處, 和 之間的關係(四管)...............................82 圖4.26 加熱器表面溫度為100℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 I號冰水管)...........................................................................................82 圖4.27 加熱器表面溫度為100℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 IV號冰水管)........................................................................................83 圖4.28 加熱器表面溫度為150℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 II號冰水管)..........................................................................................83 圖4.29 加熱器表面溫度為150℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 I號冰水管)..........................................................................................84 圖4.30 加熱器表面溫度為200℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 I號冰水管)..........................................................................................84 圖4.31 加熱器表面溫度為200℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 II號冰水管)..........................................................................................85 圖4.32 加熱器表面溫度為200℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 III號冰水管).........................................................................................85 圖4.33 加熱器表面溫度為200℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 IV號冰水管)........................................................................................86 圖4.34 加熱器表面溫度為250℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 I號冰水管)..........................................................................................86 圖4.35 加熱器表面溫度為250℃時,在X=0.4處之剖面溫度分佈(單一冷熱管、 III號冰水管).........................................................................................87 圖4.36 單一冷熱管 和 之間的關係(X=0.4).......................................87 圖4.37 兩圓柱間的溫度分佈和流線分佈(D=15mm,p/D=3.0)【40】..............88 圖4.38 改變加熱器表面溫度時, 和 之間的關係(X=0.4,單一冷熱管).893972628 bytesapplication/pdfen-US地下洞道間接水冷溫度分佈自然對流紐塞數雷利數underground tunnelindirect water coolingtemperature distributionnatural convectionNusselt numberRayleigh number半圓洞道內冰水管間接冷卻系統之自然對流熱傳研究Experimental Study on Natural Convection Heat Transfer of Indirect Water Cooling System in a Semicircular Tunnelthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61334/1/ntu-96-R94522116-1.pdf