沈弘俊臺灣大學:應用力學研究所余明哲Yu, Ming-CheMing-CheYu2010-05-182018-06-292010-05-182018-06-292009U0001-0308200911404100http://ntur.lib.ntu.edu.tw//handle/246246/183550隨著半導體製程技術逐漸進步,電子元件的發熱量也愈來愈高,而在高功率電子元件晶片表面的發熱量並不是均勻分布,甚至會有熱量聚集在一點的情形發生,稱之為熱點,此高度溫度分布不均的狀況,容易造成電子元件的損壞。研究利用微機電製程技術,成功的開發出一種新型迴路式水循環系統,其功能在於推動工作流體,將熱點的熱帶到晶片表面的其他位置,增加熱的擴散,如此可以使晶片表面的溫度分布更加均勻。本研究針對迴路式水循環系統設計五種不同的幾何形狀,並利用微粒子影像測速儀得到在不同操作電壓與頻率下的流量,在操作電壓40 V、操作頻率為0.9 kHz時,可以提供91.4 μl/min的流量。實驗結果也顯示此裝置確實可以增加電子元件熱的擴散。裝置並具有製程簡易及高整合性等優勢,更可與電子元件製程互相整合,實為未來發展高效能與高可靠度之電子元件所不可缺乏之關鍵系統。With continuous progress of semiconductor technology not only are the total heat fluxes of electronic devices increasing, but also are the heat flux distribution highly non-uniform over the die area. The local area of high heat flux which referred to as so called a hot spot adversely affect the reliability, performance and yield of an electronic device.In this study, a novel closed-loop water system by using micro- pumps was successfully developed by MEMS technique. The working fluid was driven by two valveless micropumps to transport heat from hot spot to other locations of the device and enhance heat-spreading. As a result, the temperature distribution of the chip surface became more uniform. Five geometric designs of the closed-loop water system were used. The flow rates at various driving voltages and frequencies were measured by Micro-PIV technique. A maximum flow rate of 91.4 μl/min was observed at driving voltage of 40 V and frequency of 0.9 kHz. The results also demonstrated the device had an ability to enhance heat-spreading of an electronic devicen summary, the advantages of the present closed-loop water system are easy fabrication and high integration ability. The fabrication processes could be integrated with other electronic devices. In the future, the present system has the potential to integrate with the other electronic devices and increases their reliability.摘要 Ibstract II錄 III目錄 VI目錄 VII號說明 XII一章 緒論 1-1前言 1-2研究動機 3-3文獻回顧 6-3-1無閥門微幫浦 6-3-2微型散熱器 8-3-3微幫浦應用於迴路式冷卻系統 10-3-4熱點散熱裝置 11-4研究目的 11二章 迴路式微幫浦設計 13-1微幫浦驅動方式 13-2微幫浦工作原理 13-3壓電材料選擇 15-4迴路式微幫浦裝置設計 16-5製程選擇 18-5-1微流道製程 18-5-2封裝接合製程 21三章 元件製作與實驗設備架設 22-1光罩製作 22-2基材清潔 22-3矽晶圓微流道製程 24-3-1黃光微影製程 24-3-2乾蝕刻製程 26-4矽晶圓微流道之封裝 27-4-1迴路式微幫浦注水孔開孔 27-4-2矽晶圓與7740玻璃接合 28-4-3壓電片的固定 29-5實驗設備與儀器架設 30四章 實驗結果與討論 32-1迴路式微幫浦製作結果 32-1-1微流道製作結果 32-1-2迴路式微幫浦封裝製作結果 32-2迴路式微幫浦流量實驗方法 34-3迴路式微幫浦效能測試 35-3-1兩震動腔體間相位差對流量之分析 35-3-2迴路式微幫浦流量量測與分析 36-3-3迴路式微幫浦流場分析 39-5模擬熱點散熱實驗 41五章 結論與未來展望 44-1結論 44-2未來展望 45考文獻 48application/pdf4248654 bytesapplication/pdfen-US熱點微機電製程迴路式微幫浦微粒子影像測速儀hot spotMEMSclosed-loopmicropumpMicro-PIV應用壓電微幫浦於迴路式水循環系統之開發與應用Development and Application of a Closed-loop Water System based on PZT Micropumpsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/183550/1/ntu-98-R96543027-1.pdf