2014-08-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/654878摘要:本計畫為兩年期計畫,延續NSC-102-2116-M-002-018-所得之研究成果,以一個太陽光之光源照射,氧化鋅奈米柱陣列和樹枝狀氧化鋅陣列光電極之光電流由受光的瞬間緩慢上升至一穩定值。樹枝狀氧化鋅陣列對照氧化鋅奈米柱陣列在波長320 nm 至440 nm 有著較高的轉換效率,在380 nm 的波段下,樹枝狀氧化鋅陣列的轉換效率為58%,而氧化鋅奈米柱陣列則只有32%。本計畫擬進一步開發其他種類之具高表面積與特殊結構的樹枝狀奈米金屬氧化物陣列。單一奈米金屬氧化的製備,面對新興的能源的發展以不敷使用,現今的研究透過複合式的組成,藉由兩種半導體的結合,改善其對可見光的吸收能力,以應用在太陽光分解水製氫並應用在儲能型光化學電池。我們將製備出的樹枝狀一維金屬氧化物陣列,透過適當的方式結合其他種半導體,並檢測樹枝狀奈米複合金屬氧化物陣列電極對光的吸收與電子的收集能力,以及光電催化分解水製氫氣系統的光電轉換效率同時製備其複合材料,除了提升其光化學性質外同時改善材料的穩定性及儲能效率。我們將探討製程參數對複合金屬氧化物陣列之 特性影響以獲得高效率之新型觸媒材料。同時將所得的材料製備成光電極,量測光電催化分解水產氫之效率。複合材料之晶相結構、尺寸大小及其他光譜性質的探討,以TEM/EDS、FESEM、XRD、UV-Vis、ICP、Raman、XPS、XAS 等光譜測試之。探究催化反應的本質與機理,我們預期此計畫之執行將能為乾淨的綠色能源開發研究提供高效率的新型觸媒材料。所製備之奈米觸媒材料將有效應用於與新能源相關的催化反應。<br> Abstract: This proposal is a 2-year project. As a result from NSC-102-2116-M-002-018-, hierarchical branched ZnO nanoraod arrays were grown on FTO substrates using solution route technique. For photoe;ectrocatalytic hydrogen generation by water splitting under 1 sun irradiation, the branched ZnO nanorod device exhibited a 2 fold increase compared with ZnO nanorod based device. Moreover, the maximum incident photon-to-current conversion efficiency at 380 nm increased from 32% to 58% in the branched ZnO nanorod based device. In this proposal, we plan to prepare other kind of branched nano-composite metal oxide arrays with high surface area and specific structural properties that serve as a model architecture for efficient photochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics, and highly conductive pathway for charge carrier collection. The branches improved efficiency by improved charge separation and transportation. Besides, we will investigate the effect of preparation parameters on the properties of branched nano-composite metal oxide arrays. The prepared catalysts will be applied to photoelectrochemical hydrogen production. Various spectroscopic systems, TEM/EDS、FESEM、XRD、UV-Vis、ICP、Raman、XPS and XAS will be employed to investigate the nature and mechanism of catalytic reactions. We expect to develop highly efficient catalysts to achieve green energy application.樹枝狀金屬氧化物光電催化Branchedmetal oxidephotoeletrocatalytic樹枝狀奈米複合金屬氧化物陣列製備及其光電催化產氫之應用(II)