Tseng, Yu HsiangYu HsiangTsengSHU-KAI HSIEH2023-11-012023-11-012022-01-0129512093https://scholars.lib.ntu.edu.tw/handle/123456789/636737Compounding, a prevalent word-formation process, presents an interesting challenge for computational models. Indeed, the relations between compounds and their constituents are often complicated. It is particularly so in Chinese morphology, where each character is almost simultaneously bound and free when treated as a morpheme. To model such word-formation process, we propose the Notch (Nonlinear Transformation of Character embeddings) model and the character Jacobians. The Notch model first learns the non-linear relations between the constituents and words, and the character Jacobians further describe the character’s role in each word. In a series of experiments, we show that the Notch model predicts the embeddings of the real words from their constituents and helps account for the behavioral data of the pseudowords. Moreover, we also demonstrated that character Jacobians reflect the characters’ meanings. Taken together, the Notch model and character Jacobians may provide a new perspective on studying the word-formation process and morphology with modern deep learning.Character Jacobian: modeling Chinese character meanings with deep learning modelconference paper2-s2.0-85165724524https://api.elsevier.com/content/abstract/scopus_id/85165724524