方煒Fang, Wei臺灣大學:生物產業機電工程學研究所王奕程Wang, Yi-ChengYi-ChengWang2010-05-052018-07-102010-05-052018-07-102008U0001-2507200812201100http://ntur.lib.ntu.edu.tw//handle/246246/180209本研究針對包括電解質濃度、電解時間、電解電壓、溶劑種類與電極極距等不同電解條件下所製備之無隔膜電解水溶液的pH值、ORP 與FAC (自由氯濃度)進行分析。結果顯示使用氯化鉀為電解質、使用去離子水為溶劑、高電解質濃度與低電壓的條件下,單位電能轉換成FAC的效率為最高。考慮無隔膜電解水的高導電度可能造成在植物澆灌上的使用限制,本研究亦建立無鹽電解水的製備方法。自製之無隔膜電解水應用在蝴蝶蘭五種主要病原菌的滅菌上,測試的菌種包括細菌性軟腐菌、灰黴病、白絹病、疫病與黃葉病。各病原菌滅菌所需最低 FAC 濃度分別為60、30、60~120、120~200 與120 ppm。五種病原菌當中,以灰黴病病原菌的耐受性最低,只需要自由氯濃度為 30 ppm之無隔膜電解水就可抑制孢子發芽率達99 %以上。研究使用電化學循環伏安法定量分析FAC濃度,研究發現位於1,100 mV位置之氧化峰電流值與次氯酸鈉溶液濃度(10 ~ 1000 mM)有極高的線性關係。此線性關係亦存在於以氯化鉀做電解質之無隔膜電解水,其迴歸公式簡列如下: = 18.509 * X中, X 為以掃描速率50 mV/s進行循環伏安法分析,其位於1100 mV之氧化峰值電流值,單位為μA。Y則為FAC之濃度,單位為ppm。研究已成功的建立了利用循環伏安法分析以氯化鉀為電解質所製備之無隔膜電解水之FAC濃度。對應於五種病原菌滅菌所需之最低FAC濃度值,若循環伏安法位於1,100 mV 之氧化峰電流值分別高於3.24、1.62、3.24~6.48、6.48~10.81與6.48 μA,則該無隔膜電解水對五種病原菌皆可達到99 %以上的滅菌效果。Impacts of various electrolysis conditions on pH, ORP and FAC (free active chlorine) were investigated for the production of membraneless electrolyzed water, including electrolyte concentration, voltage, time elapsed, types of solvent and distance of electrodes. Results showed that condition of using KCl as the solute, using de-ionized water as solvent, high electrolyte concentration and low electrolyzed voltage has the highest efficiency in producing FAC in terms of electricity cost. Membraneless electrolyzed water has high EC, thus making it not suitable for irrigation. Method to produce saltless electrolyzed water with low EC was introduced.elf-produced membraneless electrolyzed water was applied to the suppression of 5 major pathogens of Phalaenopsis. The lowest FAC concentrations required to kill pathogens of soft rot, botrytis blight, southern blight, phytophthora rot, and yellow rot were identified. They are: 60, 30, 60~120, 120~200 and 120 ppm, respectively. Among those pathogens, pathogen of botrytis blight required the lowest FAC concentration (30 ppm) to reach 99 % disinfection effect.yclic voltammetry was used to analyze the FAC concentration of the electrolyzed water. The linear relationship of oxidation peak current at 1100 mV and FAC concentration of sodium hypochlorine (NaClO) from 10 to 1000 mM were established. Same linear relationship can be found with the membraneless electrolyzed water using KCl as the solute. The equation is listed as follows: = 18.509 * Xhere X is the oxidation peak current in μA at 1100 mV at 50 mV/s sweep rate and Y is the FAC concentration in ppm.ased on this finding, measurement of FAC value can be greatly simplified. The lowest oxidation peak current at 1100 mV of membraneless electrolyzed water to kill 99% of the above listed pathogens are 3.24, 1.62, 3.24~6.48, 6.48~10.81 and 6.48 μA, respectively.第一章 前言與研究目的..................................................1二章 文獻探討..........................................................................................2.1 電解水生成設備.............................................................................2.2 鹼性電解水...........................................................................3.3 酸性電解水.......................................................................................3.4 電解水滅菌原理.............................................................................3氧化還原電位 (high ORP value)..................................................................4酸鹼值 (low pH value).............................5濃度自由氯(free available chlorine)...............................................................5.5 其他與氯相關之滅菌化學物質............................................................8.6 自由氯 (free available chlorine) 濃度的量測方法..................8.7 有隔膜電解設備之電解水滅菌應用......................................9.8 無隔膜電解水之滅菌應用..............................................................10.9 市售電解水機簡介..................................................................10caFlo ® .............................................................................................10icrocyn ®............................................................................................11terilox system ®.....................................................................................11.10 電化學循環伏安法 (cyclic votammetry)...................................12.11 自由氯電化學分析................................................................................12.12 植物相關之滅菌方法..................................................16.13 蘭花病害相關菌種.............................................................18.13.1 細菌性軟腐病 (Soft rot).....................................................18.13.2 灰黴病 (Botrytis blight).......................................................20.13.3 白絹病 (Southerm blight、White mold、White silk).....................22.13.4 疫病 (Phytophthora rot)..................23.13.5 黃葉病(Yellow leaf or Fusarium wilt) ..................................................25三章 材料與方法................................................................................27.1 研究設備與材料...........................................27.2 無隔膜電解水之製備..................................................................29.3 電解水之參數量測...................................................29.4 電化學分析儀--Potentiostat (CH Instruments®, USA)..........................31.5 蘭花相關病原菌菌種保存與活化..................................................34.5.1 細菌性軟腐菌之菌種保存與活化.................................................34.5.2 灰黴菌之菌種保存與活化.........................................................34.5.3 白絹病之菌種保存與活化..................................................36.5.4 疫病病原菌之菌種保存與活化..................................................36.5.5 黃葉病病原菌之菌種保存與活化...............................................36.6 不同電解參數之探討.....................................................38.6.1 溶液濃度.....................................................................38.6.2 電解電壓.................................................................38.6.3 電解時間....................................................38.6.4 溶劑種類.............................................................................39.6.5 電極極距..................................................................39.6.6 電極種類..........................................................................39.7 電解效益之探討..........................................................40.8 電解決策支援軟體之開發...........40.9 無鹽滅菌水之製備........................................................41.10 電化學循環伏安法分析自由氯定量......42.10.1 自由氯濃度分析........42.10.2 掃描速率分析...........43.10.3 無隔膜電解水之循環伏安法分析......43.10.4 最低滅菌FAC 濃度之分析........43.11 無隔膜電解水應用於蘭花相關菌種之滅菌測試...44.11.1 細菌性軟腐菌之滅菌測試步驟....44.11.2細菌性軟腐菌之最低滅菌指標評估分析....44.11.3 灰黴菌之滅菌測試步驟.........45.11.4 無隔膜電解水對於灰黴菌之滅菌效果測試......45.11.5無隔膜電解水對於白絹病之滅菌效果測試.........45.11.6無隔膜電解水對於蝴蝶蘭疫病之滅菌效果測試.................................46.11.7 無隔膜電解水對於黃葉病之滅菌效果測試........................................46四章 結果與討論...................................................................47.1 溶液濃度...........................................................................................47.1.1 電解質濃度與電解後溶液pH值之關係.................................................48.1.2 電解質濃度與電解後溶液ORP值之關係..............................................50.1.3 電解質濃度與電解後溶液FAC值之關係...............................................52.2 電解電壓....................................................................................53.2.1 電解電壓與電解後溶液 pH值之關係...............................................54.2.2 電解電壓與電解後溶液ORP值之關係..............................................55.2.3 電解電壓與電解後溶液FAC值之關係...............................................56.2.4 電解電壓與電量消耗之關係..............................................................57.3 電解時間....................................................................................58.3.1 電解時間與電解後溶液pH值之關係.................................................59.3.2 電解時間與電解後溶液ORP值之關係..............................................60.3.3 電解時間與電解後溶液FAC值之關係...............................................61.4 不同電解條件製備之電解水FAC濃度迴歸公式.........................................62.5 不同電解條件製備之電解水FAC濃度迴歸公式比較.................................63.6 決策支援軟體開發............................................................................64.7 不同溶劑對電解的影響.................................................................65.8 電極極距對電解效果之影響.........................................................67.9 電極種類之比較..........................................................................69.10 電解能源效益探討....................................................................70.11 無鹽滅菌水製備.............72.11.1 無鹽滅菌水之製備原理與軟體模擬.........72.11.2 無鹽滅菌水製備.....................................................................74.12 電化學循環伏安法之自由氯定量........75.12.1 次氯酸鈉溶液...........................................75.12.2循環伏安法掃描速率之探討...................80.12.3無隔膜電解氯化鉀溶液之循環伏安法分析.........................................84.13 無隔膜電解水應用於蘭花相關菌種之滅菌測試..............................87.13.1 軟腐菌之滅菌測試..............................................................87.13.2 灰黴菌之滅菌測試................................................................89.13.3 白絹病之滅菌測試..............................................................91.13.4 疫病之滅菌測試................................................................93.13.5 黃葉病之滅菌測試...........................................................95.14 無鹽滅菌水應用於蘭花滅菌....................................................96.15 蘭花常見病菌滅菌之最低FAC濃度.......................................97五章 結論................................................................................98六章 建議...........................................................................100amp;#63851;考文獻.................................................102錄 一..............................................................107錄 二...................................................................110application/pdf2986328 bytesapplication/pdfen-US無隔膜電解水循環伏安法蝴蝶蘭病原菌membraneless electrolyzed watercyclic voltammetrypathogens of Phalaenopsis自製無隔膜電解水應用於抑制蝴蝶蘭主要病原菌Application of Self-Produced Membraneless Electrolyzed Water on Suppression of the Major Pathogens of Phalaenopsisthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/180209/1/ntu-97-R95631018-1.pdf