2007-08-012024-05-15https://scholars.lib.ntu.edu.tw/handle/123456789/665122摘要:超高電容器(SC)在高功率密度應用上為一極引人注目的儲能元件。尤其當搭配二次電池時,它能提供額外的多用途性以及可攜式能源管理上的效率。非晶型或是奈米結晶的含水二氧化錳(MnO2nH2O)是一具有前景的偽電容材料,其在多種鹼金族鹽類水溶液中可貢獻一超過200 F/g之電容量。雖然此材料之研發已行之有年,偽電容的反應機制尚待釐清。儘管目前普遍一致認同電荷的儲存牽涉一發生在Mn位置的多電子轉移程序,但平衡電荷轉移的介面反應機制仍具爭議。此外,由於該物質的化學不穩定性,即便在如KCl之中性溶液中也被研究得知無法展現良好的循環壽命。我們初步的結果已清楚地察覺到現有反應機制模型的不適用性。對反應機制的基礎瞭解不僅能洞悉此材料的本徵性質,尚且有助於新型偽電容材料的探勘。在本計畫中,我們將: 1.執行牽涉多種含錳材料的偽電容反應機制之研究,其包含二氧化錳(MnO2)、水鈉錳礦(RxMnO2 nH2O)、水錳礦(MnOOH)、四氧化三錳(Mn3O4)以及錳鐵氧體(MnFe2O4); 2.研究含水二氧化錳(MnO2nH2O)電極之衰退機制; 3.進行適於高功率表現的MnO2/導電物質複合材料的製備與特性分析; 4.進行含水二氧化錳(MnO2nH2O)凝膠電解質系統的製備與特性分析。 <br> Abstract: Supercapacitor (SC) is an attractive device for high power-density applications. When working together with secondary batteries, it provides additional versatility and efficiency in the management of the portable power sources. A promising pseudocapacitive material is hydrated either amorphous or nanocrystalline manganese oxide, MnO2nH2O, which has exhibited capacitances exceeding 200 F/g in solutions of several alkali salts. Although this material has been for several years, the pseudocapacitive reaction mechanism is unclear. Although there has been a general consensus that the charge storage involves multi-electron transfer at Mn sites, the interfacial reaction mechanism that balances the charge-transfer remains controversial. In addition, it is also known to exhibit poor cycle life due to chemical instability even in neutral electrolytes, such as KCl. Our preliminary results have clearly demonstrated inadequacy of the existing models for the reaction mechanism. Fundamental understanding of the reaction mechanism not only provides insight into the intrinsic properties of this material but also help to explore new pseudocapacitive materials. In this project, we will 1.committee our studies on the reaction mechanisms involved in the pseudocapacitance of several Mn-containing materials, including MnO2nH2O, RxMnO2 nH2O (birnessite), MnOOH, Mn3O4, and MnFe2O3; 2.study on the fading mechanism of MnO2nH2O electrode; 3.synthesis and characterization of composites of MnO2 and conductive materials for high power performance; 4.synthesis and characterization of MnO2nH2Ogel electrolyte system.超高電容器二氧化錳衰退機制凝膠電解質SupercapacitorMnO2fading mechanismgel electrolyte氧化錳超高電容的機制研究與性能的提升