傅立成臺灣大學:電機工程學研究所蔡嘉峰Tsai, Chia-FengChia-FengTsai2007-11-262018-07-062007-11-262018-07-062004http://ntur.lib.ntu.edu.tw//handle/246246/53139根據在去年所提出的六自由度平面磁浮定位系統,在這個延續的研究工作中,我們主要的發展的重點在於提升系統的強健度以及定位精度。在機構重新設計的概念中,系統強健度的提升主要為使平台在整個運動過程中都能保有良好的表現而不再是只能維持在點對點的良好定位精度的系統表現。除此之外,在發展的過程中,我們仍致力於改良機構設計使其具有可預期長運動行程的能力。而為達成以上的設計目標,首先在磁力的描述上,我們經由考慮位移對磁力的變量來調整磁力描述方程式,並且使用斥力型的磁浮系統取代吸力型的架構以避免吸力型的架構對運動行程產生的限制。最後在量測系統的建構上,我們也引入了相對位置的概念來設計系統的狀態轉換演算法。在這樣的改良設計下,可以使演算法不僅在運算上有較低的複雜度也可以使得系統本身具有自動較準的能力。而在實驗的結果中,我們也將一一呈現這些改良的成果。According to what we have proposed, the 6-DOF magnetic levitation (Maglev) system, last year, we desire to improve the robustness and upgrade positioning precision in this continuous work. The re-design concept attempts to keep the good performance in the whole journey of moving rather than the point-to-point positioning precision. Furthermore, we endeavor to develop this system with an expectable large moving range. Based on these concepts, first we modify the force model in considering the variation from the displacement to the magnetic forces, and avoid the constraint of the attractive levitation in replacing the repulsive levitation. Finally, we adopt the concept of relative distance to build the measuring system. All of the performance of the improved framework will be demonstrated in the experimental results.1 Introduction 1 1.1 Motivation 1 1.2 Levitation technology 2 1.2.1 Real levitation 3 1.2.2 Research in magnetic bearing 6 1.2.3 Research in planar positioning system 10 1.2.4 Research in the novel configuration 13 1.2.5 Comparison 15 1.3 Contributions 16 1.4 Thesis organization 17 2 Operation Principle and Force Formulation 19 2.1 Magnetic force characteristics 20 2.2 Expression of magnetic forces and torques 22 2.3 Force model simplification 34 2.3.1 Direct measurement methodology 35 2.3.2 Force model validation 41 2.3.3 Linear formulation 43 3 Design Concepts of the Planar Maglev System 45 3.1 Original system review 46 3.2 Development and improvement 50 3.2.1 Repulsive levitation 50 3.2.2 Noise diminution 56 3.3 Overall mechanical system 59 3.4 Magnet characteristics 60 4 Modeling and Sensing Methodology 64 4.1 Assumptions 65 4.2 Dynamic formulation 66 4.3 Sensing methodology 70 4.3.1 Full attitudes transformation 71 4.3.2 Modified sensing methodology 75 4.4 Discussion 77 4.4.1 Simulation and analysis 79 5 Controller Design and Numerical Simulation 84 5.1 Controller design 85 5.1.1 Sliding surface 87 5.1.2 Controller formulation 87 5.1.3 Stability analysis 90 5.2 Numerical Simulation 92 6 Experimental Results 94 6.1 Experimental Environment 94 6.2 Macro-Motion 95 6.2.1 Regulation response 95 6.2.2 Large-moving range 96 6.2.3 Step-train response 97 6.2.4 Sinusoidal motion 99 6.2.5 Circling motion 100 6.2.6 Rotation tracking around z-axis 101 6.2.7 Payload test 101 6.2.8 Comparison with the robustness 103 6.3 Micro-Motion 104 6.3.1 Micro-step motion 104 6.3.2 Micro-circling motion 104 6.3.3 Rotation tracking around z-axis 105 7 Conclusions 107 Reference 109 Appendix A 114 Appendix B 1163388093 bytesapplication/pdfen-US適應滑差控制精密定位強健磁浮系統Magnetic levitation systemMaglevAdaptive sliding-mode controllerRobustnessPrecision positioning整合設計與控制以提升系統強度及定位精度於平面式磁浮系統Integrated Design and Control to Improve Robustness and Upgrade Positioning Precesion on a Planar Maglev Systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/53139/1/ntu-93-R91921058-1.pdf