劉懷勝臺灣大學:化學工程學研究所張哲魁Chang, Tse-KueiTse-KueiChang2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/52384在蛋白質復性程序中,形成錯誤的摺疊與聚集體是降低復性效率的主要原因。實驗結果證實,注射閥與管柱間所形成的聚集反應嚴重阻礙SEC(size exclusion chromatography)的復性效率,因此,本研究即在探討應如何抑制注射閥與管柱間的聚集反應以提昇復性效率,並在不同復性劑組成與稀釋倍率條件下相較於直接稀釋法所得復性結果,以嘗試了解管柱內的多孔材質對於輔助蛋白質摺疊之機制。 本研究提出兩種方法來抑制注射閥與管柱間的聚集反應,即Chaperone solvent plug復性法與流動相兩段速復性法。Chaperone solvent plug 復性法是利用高濃度的變性劑提升失活蛋白質在遷移過程時的穩定性,藉以抑制聚集體的形成; 流動相兩段速復性法則是先採取高初始流速方式以抑制管柱前端所生成的聚集反應,待失活蛋白質進入管柱後則採取低流速方式以提供蛋白質進行正確摺疊的所需時間; 因此,活性回收率能否提升將取決於蛋白質在管柱內的滯留時間。此外,將流動相兩段速結合chaperone solvent plug復性法將可完全取得100%的質量與活性回收率。 為能了解注射閥與管柱間如何進行聚集反應,本研究亦探討不同規格樣品環(改變管徑或管長)對於聚集體的形成機制與復性效率之影響,並獲得高注入體積與低進料濃度為提升復性效率的最佳注入方式。 此外,亦採用氧化還原復性劑的梯度方式動態調控雙硫鍵的形成,並在不同復性劑組成條件下,比較isocratic SEC復性法與稀釋法所得復性結果,發現低稀釋倍率的復性方式可突顯SEC的多孔材質具有輔助或催化蛋白質摺疊之能力,尤其在缺乏GSH(reduced glutathione)或GSSG(Oxidized glutathione)的復性環境下,可取代部份GSH與GSSG在氧化還原雙硫鍵之角色。The formation of incorrectly folded protein, in particular aggregates, was recognized as the hindrance of good yield in refolding processes. Results from our study have shown that the formation of aggregates between the injection valve and column inlet was found to strongly hamper (adversely affect) the efficiency of lysozyme refolding in size-exclusion chromatography (SEC). To enhance the performance of protein refolding, our studies were directed toward seeking out methods or means to reduce the aggregate production during the SEC refolding. Furthermore, we compared the refolding performances between the direct dilution and SEC refolding methods under different constituents of refolding buffer or dilution factors, and then examined how the protein refolding was assisted via porous matrix in SEC column. In this study, chaperone solvent plug strategy and step change of mobile phase flowrate strategy were developed to overcome the aggregate formation between the injector and column inlet. For the former one, the denatured protein was escorted from the injector into the column by a solvent plug that could inhibit aggregate formation or stabilize the denatured protein. As to the latter one, a higher flowrate of mobile phase should be applied to reduce the traveling time of denatured protein from injector to column inlet. After the denatured protein penetrated into the column, a lower flowrate should be used to allow enough time for protein to refold. Enough residence time inside the column was identified to be the key for proper protein refolding. Then combining this method with chaperone solvent plug strategy could achieve complete recovery of denatured proteins, both mass and activity recoveries. Furthermore, we also investigated how aggregate formation as well as renaturation yield varied with the tubing dimension (diameter or length) of sample loop in the SEC refolding process. It was found that a sample with large volume and low concentration was preferable for refolding process. In addition, via a gradient of redox buffers through the SEC, oxidative refolding was achieved under kinetic control the disulfide bond formation. Employing the renaturation buffer system with different redox constituents and comparison with batch dilution, we demonstrated that the porous matrix packing in SEC could assist protein refolding in the absence of reduced and oxidized glutathione (GSH/GSSG).目錄 中文摘要 I Abstract II 圖目錄 VII 表目錄 XVI 第一章 緒論 1 1-1 研究背景與方向 1 1-2 論文內容 2 第二章 文獻回顧 4 2-1 細胞內(in vivo)蛋白質的摺疊(folding)與錯誤摺疊(misfolding) 4 2-2 細胞內聚集體的分離純化, 溶解與復性程序 6 2-2-1 內聚體的分離純化與溶解程序 9 2-2-2 內聚體的復性程序 12 2-3 細胞外(in vitro)蛋白質的摺疊程序與聚集反應 12 2-3-1 蛋白質的再摺疊與聚集反應動力學 15 2-4 蛋白質的再摺疊程序 17 2-5 催化蛋白質再摺疊之方式─ 降低變性劑濃度 20 2-6 催化蛋白質再摺疊之方式─層析法(chromatography) 21 2-6-1 大小排阻層析法(size-exclusion chromatography-SEC) 21 2-6-2 離子交換層析法 (ion-exchange chromatography-IEC) 29 2-6-3 摺疊催化劑固定化復性法 (immobilized folding catalyst) 34 2-6-4 疏水性層析法(Hydrophobic interaction chromatography-HIC) 36 2-6-5 固定化金屬親和性層析法 (Immobilized metal affinity chromatography-IMAC) 37 2-7 復性程序中雙硫鍵的形成 39 2-8 蛋白質的聚集反應 41 2-8-1 物理性聚集反應之機制 41 2-8-2 化學性聚集反應之機制 44 2-8-3 影響聚集反應之因素 44 2-8-4 聚集體的型態(morphology)與構造 46 2-8-5 聚集體的可逆性(Reversibility) 48 2-9 溶菌酶(Lysozyme)簡介…………………………………………………51 2-9-1 溶菌酶之介紹 51 2-9-2 溶菌酶之結構 51 2-9-3 溶菌酶之摺疊 53 第三章 實驗裝置、藥品與步驟 57 3-1 高效能液相層析儀 57 3-2 其他實驗裝置 57 3-3 實驗藥品 58 3-4 實驗步驟 59 3-4-1 溶菌酶之變性 59 3-4-2 直接稀釋復性法(Direct dilution) 59 3-4-3 大小排阻層析復性法 60 3-4-4 溶菌酶的活性測定 61 第四章 Chaperone solvent plug 復性法 62 4-1 實驗動機 62 4-2 實驗方法 63 4-2-1 高效能液相層析儀 63 4-2-2 Chaperone solvent plug 之操作程序 65 4-3 實驗結果與討論 66 4-3-1 以傳統SEC復性法探討流動相流速對於復性效率之影響 66 4-3-2 探討注射閥與管柱間的距離長短對於質量回收率之影響 70 4-3-3 探討管柱與注射閥間所生成聚集反應之行為 72 4-3-4 Chaperone solvent plug 復性法對於復性效率之影響 74 4-4 結論 76 第五章 兩段速流動相復性法 77 5-1 實驗動機 77 5-2 實驗方法(兩段速復性法的操作流程) 77 5-3 結果與討論 78 5-3-1 流動相恆速與兩段速復性法對於復性結果之比較 78 5-3-2 流動相兩段速復性法對於復性效率之影響 81 5-3-3 失活蛋白質滯留於管柱時間長短對於復性效率之影響 84 5-3-4 滯留時間長短對於層析圖譜變化與活性分佈之關係 87 5-3-5 兩段速復性法結合Chaperone solvent plug對於復性效率之影響 91 5-4 結論 92 第六章 注入體積對於聚集體生成與復性效率之影響 93 6-1 實驗動機 93 6-2 不同管長樣品環與進料濃度對聚集體生成之分析(固定管徑) 94 6-2-1 層析圖譜之分析 94 6-2-2 各波峰聚集體之生成分析 96 6-3 不同管徑樣品環與進料濃度對聚集體生成之分析(固定管長) 96 6-3-1 層析圖譜之分析 99 6-3-2 各波峰聚集體之生成分析 99 6-3-3 各波峰聚集體佔總生成聚集體之百分比分析 104 6-4 比較不同形式樣品環與進料濃度對聚集體生成之影響 108 6-4-1 不同形式樣品環與進料濃度對聚集體生成總量之比較 108 6-4-2 不同形式樣品環與進料濃度對聚集體生成速率之比較 110 6-5 不同形式樣品環與進料濃度對復性效率之影響 115 6-5-1 不同形式樣品環與進料濃度對層析圖譜之影響 115 6-5-2 不同形式樣品環與進料濃度對質量回收率之影響 118 6-5-3 不同形式樣品環與進料濃度對活性回收率之影響 122 6-6 結論 128 第七章 氧化/還原劑線性梯度(linear gradient)復性法 129 7-1 實驗動機 129 7-1-1 以直接稀釋法探討緩衝溶液組成成分對於蛋白質摺疊之影響 131 7-2 實驗方法與步驟 138 7-2-1 線性梯度之復性液組成(Constituents of refolding buffer) 138 7-2-2 氧化/還原劑線性梯度操作流程 139 7-2-3 氧化/還原劑線性梯度所造成基線(base line)飄移 140 7-3 結果與討論 141 7-3-1 線性梯度3.6 mM GSH與1.8 mM GSSG 141 7-3-2 線性梯度A280/A260之比值 152 7-3-3 線性梯度當量總濃度(3.6 mM 與0 mM) 161 7-3-4 以線性梯度A280/A260復性法探討不同注入體積(稀釋倍率)與濃度對復性效率之影響 169 7-3-5 探討不同復性劑組成對於直接稀釋法與SEC復性法所得復性效率之影響 173 7-4 結論 179 第八章 總結 180 參考文獻 附錄A...............................................................................................................A-1 圖目錄 第二章 圖2-1-1 (a)在內質網內(endoplasmic reticulum,ER)調節蛋白質的摺疊途徑[Dobson, 2003]。(b) 在蛋白質摺疊過程中,可能所形成的錯誤摺疊途徑與內聚體的形成[Middelberg, 2002] 。 5 圖2-2-1 欲由細胞內所含內聚體獲取重組蛋白質所需之操作流程 8 圖2-2-2 尿素破壞蛋白質結構之機制 10 圖2-2-3 失活蛋白質的復性方式: (1)降低變性劑濃度以減緩其對於蛋白質結構之破壞;(2)將變性劑自蛋白質周圍移除使其完全無法破壞蛋白質結構 13 圖2-2-4 細胞外(in vitro)蛋白質的再摺疊途徑與聚集反應。失活蛋白質除可朝向正確的摺疊途徑以恢復原有活性外,亦可能因分子間彼此疏水性區的裸露而形成無規則形狀的聚集體或因β-sheet的相互連結而形成具有高度組織性的纖維狀聚集體 14 圖2-3-1 簡化描述正確摺疊與聚集在動力學所造成競爭性反應。其中U為失活狀態之蛋白質(unfolded state),I為中間體(intermediate state),N為原始蛋白質(native state),A為聚集狀態(aggregated state)。1,2路徑可正確摺疊至有活性蛋白質;3路徑則導致聚集體產生[Goldberg et al., 1991; Jungbauer et al., 2004]。 16 圖2-4-1 失活蛋白質在薄膜層上所產生’’reptation’’之現象[West et. al., 1998] 19 圖2-6-1 失活蛋白質在SEC管柱內所進行的復性機制。藉由變性劑擴散至孔洞內以移除其對於失活蛋白質之影響,可逐漸摺疊至正確構形[Batas and Chaudhuri, 1996] 23 圖2-6-2 以大小排阻層析法結合尿素梯度之操作流程[Gu et al., 2001]。即先以流動相A (含有3mM/0.3mM GSH/GSSG、0.15M NaCl與1mM EDTA)預平衡管柱(Superdex 75 (10/30)) ,再逐漸導入流動相B(含有8M尿素及與流動相A相同的組成成分)以製造管柱內尿素濃度的逐漸下降 26 圖2-6-3 以不同梯度方式改變尿素濃度分佈。其中,Ⅰ為線性梯度(linear gradient)﹔Ⅱ為convex gradient﹔Ⅲ為concave gradient [Li et al., 2004] 28 圖2-6-4 利用三種不同組成的緩衝液進行離子交換層析復性法。首先以denatured buffer(含有8M尿素)預平衡管柱,並輔助失活蛋白質吸附在材質上(marked 1) ﹔逐漸導入復性緩衝液以降低尿素濃度進而催化蛋白質的摺疊(marked 2,3 ) ﹔導入含有高離子強度的緩衝液脫附已摺疊完成的蛋白質(marked 4) [Li et al., 2004] 30 圖2-6-5 利用兩種不同組成的緩衝液進行離子交換層析復性法。首先以含有8M尿素的denatured buffer預平衡管柱(marked 1)﹔逐漸導入含有1M尿素的復性緩衝液並同時結合鹽類濃度的增加(not shown)以催化蛋白質的摺疊(marked 2 ) ﹔由於尿素與鹽類濃度分別逐漸下降與增加,因此可同時誘導蛋白質不斷進行摺疊與脫附 (marked 3,4) [Li et al., 2004] 30 圖2-6-6 以雙梯度離子交換層析法進行溶菌酶之復性。即以含有6M尿素、pH為6的緩衝液梯度變化至含有1M尿素、pH為10的溶液﹔因此,可同時調控尿素濃度與pH分別逐漸下降與增加的復性環境[Li et al., 2002] 32 圖2-8-1 失活蛋白質進行物理性聚集反應之方式。(a) nucleation growth; (b) sequential polymerization; (c) multimeric polymerization 42 圖2-8-2 纖維化聚集體的成長將歷經延滯階段(lag phase)的成核反應而後快速成長的過程。延滯階段並無明顯聚集反應的形成,但晶核一旦形成將加速聚集反應的進行(實線所示) ﹔然而,溶液中採取添加預成長的聚集體將可消除延滯階段[Nilsson, 2004] 43 圖2-8-3 具有高度組織性的纖維化聚集體。由圖中可顯示4條protofilament互相纏繞所形成的fibril ﹔而其中每一條protofilament皆由互相平行(antiparalle)的β-sheet以氫鍵方式鍵結並以垂直於軸方向的方式排列而成細長且未分支之外觀[Stefani and Dobson, 2003] 47 圖2-8-4 以穿透式電子顯微鏡觀察human lysozyme 所形成的amyloid fibril [Stefani and Dobson, 2003] ,Scale bar為400nm 47 圖2-8-5 AcP的聚集反應與disaggregation。(a)溶液中添加25% TFE可誘導不同程度的聚集反應; 其歷經(1)partially unfolded monomeric protein,(2)globular aggregates(60-200nm) ,(3)cluster of globular aggregates(400-800nm)與(4)larger superstructure(>5μm); (b)上述溶液稀釋至含有5% TFE,可將不同階段下所形成的聚集體以不同的速率常數disaggregate至原有的活性蛋白質[Calamai et al., 2005] 49 圖2-9-1 溶菌酶分子結構圖。黑色部份主要由四個α-螺旋所構成α-domain;白色部分則由三股反平行β-摺板構造及較小的雙股反平行摺板所構成β-domain。雙硫鍵則分別為Cys6-Cys127,Cys30-Cys115,Cys4-Cys80與Cys76-Cys94 [van den Berg et al., 1999] 52 圖2-9-2 失活溶菌酶可能摺疊之路徑。其中有25-30﹪分子採以快速摺疊之路徑;70-75 ﹪分子則以緩慢摺疊之方式達到最原始之立體結構 [Dobson, 2004] 54 圖2-9-3 失活溶菌酶摺疊過程中,復性動力學與雙硫鍵鍵結之相關性。其中R 表示完全展開之蛋白質分子;I表示已鍵結一至二條雙硫鍵但未建構完成之中間體;N表示已形成三條雙硫鍵且高度近似原本立體結構之中間體。其中最不易形成Cys76-Cys94雙硫鍵之鍵結[van der Berg et al., 1999]。 56 第四章 圖4-2-1 以chaperone solvent plug復性法進行蛋白質復性之流程。 [A] 先以復性緩衝溶液進行預平衡 [B] 利用流動相選擇器導入聚集體抑制溶液 [C] 此chaperone solvent plug將流動至注射閥 [D] 當chaperone solvent plug流動至注射閥時,將失活蛋白質注入至 chaperone solvent plug. 64 圖4-3-1 分別以傳統的SEC復性法 ( )與chaperone solvent plug 復性法( ),在不同流速條件下所得的層析圖譜.(Denatured lysozyme loading: 20μl of 5 g/l.) 68 圖4-3-2 以傳統SEC復性法探討流動相流速對於質量回收率(●)與總活性(▲)之影響 (Lysozyme loading: 20μl of 5 g/l.) 69 圖4-3-3 在高流速操作條件下(1.0 ml/min),以不同長度的連接管探討注射閥與管柱間的距離對於層析圖譜與質量回收率之影響(Lysozyme loading: 20μl of 5 g/l.) 71 圖4-3-4 在可見光波長條件下(450 nm) ,以繞流方式探討不同流動相組成與流速對於管柱前端所生成聚集體之影響。(A)復性緩衝溶液(傳統SEC復性法) (B)聚集體抑制溶液(The chaperonee solvent plug) (Lysozyme loading: 20μl of 5 g/l.) 73 圖4-3-5 以chaperone solvent plug 復性法,探討流速對於質量回收率(●)與總活性(▲) 之影響 (Lysozyme loading: 20μl of 5 g/l.) 75 第五章 圖5-2-1 一段速 ([Ⅰ]-[Ⅳ]) 與兩段速復性法 ([A]-[H])之流速配置圖. 79 圖5-3-1 以兩段速復性法,在不同流速配置下所得層析圖譜. Denatured lysozyme, 20μl of 5 g/l. (7min × 1.0 ml/min, then 0.3 ml/min [A], 7min × 0.8 ml/min, then 0.3 ml/min [B], 7min × 0.5 ml/min , then 0.3 ml/min [C], 0.3 ml/min [Ⅳ], 7min × 0.1 ml/min , then 0.3 ml/min [D]) 82 圖5-3-2 以兩段速復性法,探討不同的初始流速對於質量回收率(●)與總活性(▲)之影響. Lysozyme loading: 20μl of 5 g/l. 83 圖5-3-3 在不同流速配置條件下,探討失活蛋白質在管柱內的滯留時間對於層析圖譜之影響。注入量與濃度分別為20 μl 與5 g/l 88 圖5-3-4 在不同流速配置下所得層析圖譜(復性蛋白質)與相對應之活性分怖。(7min × 1.0 ml/min, then 0.3 ml/min [operation-A], 1min × 1.0 ml/min, then 0.2 ml/min [operation-G], 1min ×1.0 ml/min , then 0.1 ml/min [operation-H] ). Denatured lysozyme (20 μl of 5 g/l) 90 第六章 圖6-2-1 在固定樣品環內徑為0.25mm條件下,以繞流法探討不同失活蛋白質濃度(1、5、10與20 g/l)與不同管長樣品環(10.2、25.5、40.8、102、200與400cm)對於管注前端所生成不可溶性聚集體之層析圖譜 95 圖6-2-2 在相同管徑條件下(ID=0.25mm),探討不同管長與蛋白質濃度(1、5、10與20g/l)對於(a)第1波峰聚集體與(b)第2波峰聚集體生成之影響 97 圖6-2-3 在相同管徑條件下(ID=0.25mm),探討不同管長樣品環與蛋白質濃度(1、5、10與20g/l)對於每注入單位毫克的失活蛋白質所能生成聚集體總量之影響 97 圖6-3-1 在不同雷諾數(Reynolds number)條件下,管徑的擴張(expansion)與收縮(contraction)所造成流態分佈[Badekas and Knight, 1992] 98 圖6-3-2 以繞流法探討在不同蛋白質濃度(1、5、10與20 g/l)條件下,樣品環管徑的(a)收縮(0.17mm)與(b)擴張(0.5、0.75與1.0mm)對於生成不可溶性聚集體之層析圖譜,並相較於標準狀態下(ID=0.25mm)所獲得圖譜結果 100 圖6-3-3 以相同管長(L=25.5cm)但在不同蛋白質濃度條件下(1、5、10與20g/l),探討管徑擴張係數(D/d)對於(a)第1、(b)第2、(c)第3波峰與(d)總聚集體生成之影響 101 圖6-3-4 以相同管長(L=25.5cm)但在不同管徑擴張係數條件下(D/d=0.68、1、2、3與4),探討不同失活蛋白質濃度(1、5、10與20g/l)對於(a)第1、(b)第2、(c)第3波峰與(d)總聚集體生成之影響 103 圖6-3-5 以相同管長(L=25.5cm)樣品環但在不同失活蛋白質濃度條件下(1、5、10與20g/l),探討管徑擴張係數(D/d)對於(a)第1、(b)第2與(c)第3波峰聚集體佔總聚集反應之生成百分比 106 圖6-3-6 以相同管長(L=25.5cm)樣品環但在不同管徑擴張係數條件下(D/d=0.68、1、2、3與4),探討不同失活蛋白質濃度(1、5、10與20g/l)對於(a)第1、(b)第2與(c)第3波峰聚集體佔總聚集體之百分比 107 圖6-4-1 在不同失活蛋白質濃度條件下(1、5、10與20g/l),比較不同注入方式(固定樣品環管徑為0.25mm但改變管長或固定管長為25.5cm但改變管徑)所獲得總量聚集體 109 圖6-4-2 失活蛋白質在不同注入方式下(固定樣品環管徑為0.25mm但改變管長或固定管長為25.5cm但改變管徑)行經於樣品環與偵檢器間之遷移時間 111 圖6-4-3 在不同進料濃度條件(1、5、10與20g/l)下,比較不同注入方式所獲得總聚集體生成速率。三角形與圓形實線則分別代表改變內徑與增加管長的注入方式下所獲得總聚集反應速率,而虛線則代表改變內徑的注入方式下所獲得第2波峰聚集體之生成速率 111 圖6-4-4 探討不同失活蛋白質濃度(1、5、10與20g/l)與注入方式對於各波峰聚集體生成速率之影響。(a)在固定樣品環管徑但改變管長的注入方式下,探討濃度效應對於第2波峰聚集體生成速率之影響。(b)與(c)則分別代表在固定管長但改變管徑的注入方式下,探討濃度效應對於第2與第3波峰聚集體生成速率之影響 113 圖6-5-1 在固定管徑(ID=0.25mm)改變樣品環管長的注入方式下,將不同失活蛋白質濃度(1、5、10與20g/l)直接注入至SEC管柱中進行復性所得層析圖譜。 (a)1 g/l, (b) 5 g/l, (c) 10 g/l ,(d) 20 g/l,流速控制為0.5 ml/min 116 圖6-5-2 在固定管長(L=25.5cm)改變樣品環管徑的注入方式下,將不同失活蛋白質濃度(1、5、10與20g/l)直接注入至SEC管柱中進行復性所得的層析圖譜。 (a)1 g/l, (b) 5 g/l, (c) 10 g/l ,(d) 20 g/l,流速控制為0.5 ml/min 117 圖6-5-3 在不同進料濃度(1、5、10與20g/l)條件下,探討不同形式樣品環(固定管徑改變管長(a)或固定管長改變管徑(b))對於復性程序中所獲得質量回收率之影響,並比較兩不同的注入方式所得復性結果(c) 119 圖6-5-4 (a)以固定管徑(ID=0.25 mm)但改變不同管長或(b)固定管長(25.5cm)但改變不同管徑的注入方式,探討不同注入量對於質量回收率之影響 121 圖6-5-5 比較不同管徑的注入方式所得活性分佈(注入濃度為5g/l,樣品環管長為25.5cm) 123 圖6-5-6 在不同失活蛋白質濃度(1、5、10與20g/l)條件下,探討不同形式樣品環(固定管徑改變管長(a)或固定管長改變管徑(b))對於活性回收率 之影響,並比較兩不同注入方式所得復性結果(c) 124 圖6-5-7 (a)以固定管徑(ID=0.25 mm)但改變不同管長或(b)固定管長(25.5cm)但改變不同管徑的注入方式,探討不同注入量對於活性回收率之影響 127 第七章 圖7-1-1 以氧化還原劑(GSH/GSSG)輔助雙硫鍵形成之示意圖 [Goto et al., 2000]…………………………………………………………………..131 圖7-1-2 失活蛋白質的再摺疊途徑 132 圖7-1-3 失活蛋白質在缺乏2M 尿素添加與不同復性劑組成環境下,可能的摺疊途徑((B)-(D)); 並相較於只單獨添加2M 尿素之結果(A)。而上述不同復性劑組成皆溶於pH8.2, 0.1M Tris-HCl………………………...134 圖7-1-4 失活蛋白質在不同復性劑組成環境下,可能的摺疊途徑。上述不同復性劑組成皆溶於含有2M 尿素的pH8.2, 0.1M Tris-HCl 135 圖7-2-1 以氧化/還原劑線性梯度法進行失活蛋白質之復性流程 139 圖7-2-2 氧化/還原劑線性梯度時所造成基線飄移之層析圖譜 140 圖7-3-1 (a)以不同梯度時間(1,5,10與20分鐘),進行流動相由1.8 mM GSSG梯度變化至3.6 mM GSH (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 142 圖7-3-2 (a)以不同梯度時間(1,5,10與20分鐘),進行流動相由3.6 mM GSH梯度變化至1.8 mM GSSG (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 143 圖7-3-3 (a) 在不同梯度時間下(1,5,10與20分鐘) ,分別將流動相由3.6 mM GSH梯度變化至1.8 mM GSSG所獲得管柱內復性劑之濃度分佈(當流析時間為0分鐘時,失活蛋白質將注入於流動相組成為1.8 mM GSSG)﹔而在不同流析時間下(t1與t2),失活蛋白質在不同梯度斜率的復性環境下所能遷移之範圍 145 圖7-3-3 (b) 在不同梯度時間下(1,5,10與20分鐘) ,分別將流動相由1.8 mM GSSG梯度變化至3.6 mM GSH所獲得管柱內復性劑之濃度分佈(當流析時間為0分鐘時,失活蛋白質將注入於流動相組成為3.6 mM GSH)﹔而在不同流析時間下(t1與t2),失活蛋白質在不同梯度斜率的復性環境下所能遷移之範圍 146 圖7-3-4 (a)以流動相組成為3.6 mM GSH與1.8 mM GSSG,探討不同梯度時間與梯度方式對於質量回收率之影響。其中,在不同梯度時間下(1,5,10與20分鐘)將流動相由1.8 mM GSSG梯度變化至3.6 mM GSH所獲得管柱內復性劑之濃度分佈如(b)所示,而失活蛋白質所注入的流動相組成則為3.6 mM GSH; 相反的,在不同梯度時間下將流動相由3.6 mM GSH梯度變化至1.8 mM GSSG所獲得管柱內復性劑之濃度分佈情形如(c)所示,而失活蛋白質所注入的復性組成則為1.8 mM GSSG 147 圖7-3-5 以流動相組成為3.6 mM GSH與1.8 mM GSSG,探討不同梯度時間與梯度方式對於活性回收率之影響 148 圖7-3-6 以流動相組成為3.6 mM GSH與1.8 mM GSSG,探討不同梯度時間與梯度方式對於比活性回收率之影響 148 圖7-3-7 (a)以不同梯度時間(1,5,10與20分鐘),進行A280/A260比值R(流動相)由0.1梯度變化至0.3 (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 153 圖7-3-8 (a)以不同的梯度時間(1,5,10與20分鐘),進行流動相A280/A260比值R由0.3梯度變化至0.1 (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 154 圖7-3-9 (a)以線性梯度流動相A280/A260比值R 為0.1與0.3,探討不同梯度時間與梯度方式所得質量回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果(b) 。其中,在不同梯度時間下分別將流動相由比值R 為0.3梯度變化至0.1所獲得管柱內復性劑之濃度分佈如(c)所示,而失活蛋白質所注入流動相組成為比值R為0.1; 相反的,將流動相組成由比值R 為0.1梯度至0.3所獲得管柱內復性劑之濃度分佈如(d)所示,而失活蛋白質所注入的流動相組成則落於比值為0.3 155 圖7-3-10 以線性梯度流動相A280/A260比值R 為0.1與0.3復性法,探討不同的梯度時間與梯度方式所得活性回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果 156 圖7-3-11 以線性梯度流動相A280/A260比值R 為0.1與0.3復性法,探討不同的梯度時間與梯度方式所得比活性回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果 156 圖7-3-12在不同梯度時間下(1,5,10與20分鐘) ,分別將流動相的R值由0.1梯度變化至0.3所獲得管柱內比值R之分佈(當流析時間為0分鐘時,失活蛋白質將注入於流動相的比值R為0.3之復性環境)﹔而在不同流析時間下(t1與t2),失活蛋白質在不同梯度斜率的復性環境下所能遷移之範圍 160 圖7-3-13 (a)以不同梯度時間(1,5,10與20分鐘),進行當量總濃度由3.6 mM 梯度變化至不含任何復性劑(0mM) (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 162 圖7-3-14 (a)以不同梯度時間(1,5,10與20分鐘),進行當量總濃度由不含任何復性劑(0mM)梯度變化至3.6 mM (b)失活蛋白質在不同梯度時間下所獲得計算後的復性層析圖譜 (c)原始層析圖譜 163 圖7-3-15 (a)以線性梯度當量總濃度3.6mM (A280/A260比值為0.3)與0mM復性法,探討不同梯度時間與梯度方式所得質量回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果(b)。其中,在不同梯度時間下分別將流動相由當量總濃度為3.6mM梯度變化至不含任何復性劑所獲得管柱內之當量濃度分佈(c),而失活蛋白質所注入流動相組成為不含任何復性劑;相反的,將流動相組成由不含任何復性劑梯度至3.6mM所獲得管柱內之當量濃度分佈如(d)所示,而所注入的流動相組成則含有1.2mM GSH與1.2mM GSSG 164 圖7-3-16 固定流動相的A280/A260比值為0.3,線性梯度當量總濃度3.6mM與0mM,探討不同梯度時間與梯度方式所得活性回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果 165 圖7-3-17 固定流動相的A280/A260比值為0.3條件下,以線性梯度當量總濃度3.6mM與0mM復性法,探討不同的梯度時間與梯度方式所得比活性回收率,並相較於採個別復性劑(3.6mM GSH與1.8mM GSSG)進行線性梯度時所得實驗結果 166 圖7-3-18 在不同梯度時間下(1,5,10與20分鐘) ,將流動相組成由1.2mM/1.2mM GSH/GSSG梯度變化至不含任何復性劑所獲得管柱內復性劑之濃度分佈(當流析時間為0分鐘時,失活蛋白質將注入於流動相組成為不含任何復性劑)﹔而在不同流析時間下(t1與t2),失活蛋白質在不同梯度斜率的復性環境下所能遷移之範圍 168 圖7-3-19 (a)在不同梯度時間(1,5,10與20分鐘)下,進行流動相A280/A260比值R 由0.3梯度變化至0.1 (b) 在注入濃度20g/l,體積為200µl條件下,不同梯度時間下所獲得計算後的層析圖譜(c)原始層析圖譜 170 圖7-3-20 (a)在不同梯度時間(1,5,10與20分鐘)下,進行流動相A280/A260比值R由0.1梯度變化至0.3 (b) 在注入濃度20g/l,體積為200µl之條件下,不同梯度時間下所獲得計算後的層析圖譜(c)原始層析圖譜 171 圖7-3-21 以梯度流動相A280/A260比值R 為0.1與0.3,探討在不同梯度時間與梯度方式下,不同失活蛋白質濃度(10與20g/l)與注入體積(12.5與200µl)對於質量回收率之影響 172 圖7-3-22 以梯度流動相的A280/A260比值R 為0.1與0.3,探討在不同梯度時間與梯度方式下,不同失活蛋白質濃度(10與20g/l)與注入體積(12.5與200µl)對於比活性回收率之影響 172 圖7-3-23 以不同復性劑組成比例(流動相) 進行SEC isocratic復性法所獲得層析圖譜(注入濃度與體積分別為10g/l與12.5µl) 175 圖7-3-24 在不同復性劑組成條件下,比較SEC isocratic復性法與直接稀釋法所得質量回收率 (注入濃度與體積分別為10g/l與12.5µl,稀釋倍率600倍,復性時間為40分鐘) 175 圖7-3-25 在不同復性劑組成條件下,比較SEC isocratic復性法與直接稀釋法所得活性回收率(注入濃度與體積分別為10g/l與12.5µl,稀釋倍率600倍,復性時間為40分鐘) 176 圖7-3-26 在不同復性劑組成條件下,比較SEC isocratic復性法與直接稀釋法所得質量回收率(注入濃度與體積分別為20g/l與200µl,稀釋倍率43倍,復性時間為40分鐘) 176 圖7-3-27 在不同復性劑組成條件下,比較SEC isocratic復性法與直接稀釋法所得活性回收率(注入濃度與體積分別為20g/l與200µl,稀釋倍率43倍,復性時間為40分鐘) 177 附錄A 圖A-1 樣品環的管徑擴張對於流態影響……………………………………..A-1 圖A-2 固定擴張係數為1(管徑為0.25mm),但改變管長的注入方式下,探討不同注入體積對於第2波峰聚集體的滯留時間影響,並相較於方程式(1)所預測的結果………………………………………………………A-3 圖A-3 以固定管長(25.5cm),但改變擴張係數的注入方式下,探討不同注入體積對於第2波峰聚集體的滯留時間影響,並相較於方程式(1)與(5)所預測的結果………………………………………………………….A-3 圖A-4 在改變擴張係數的注入方式下,探討不同注入體積對於第3波峰聚集體的滯留時間影響,並相較於方程式(6)所預測的結果……………A-7 表目錄 第二章 表2-6-1 以大小排阻層析法進行復性[Jungbauer et al., 2004] 24 表2-6-2 以離子交換層析法進行復性[Jungbauer et al., 2004] 33 表2-6-3 以固定摺疊催化劑法進行復性[Jungbauer et al., 2004] 35 表2-6-4 以固定化金屬親和性層析法進行復性[Jungbauer et al., 2004] 38 第五章 表5-3-1 比較一段速與兩段速復性法對於復性效率之影響. Lysozyme loading: 20μl of 5 g/l. 80 表5-3-2 以不同的流速配置探討失活蛋白質在管柱內的滯留時間對於復性效率之影響,並探討兩段速復性法結合chaperone solvent plug對於復性效率之影響。注入量與濃度分別為20 μl 與5 g/l 86 第七章 表7-1-1 不同的復性劑組成對直接稀釋法復性效率之影響(10倍稀釋後,溶液中的蛋白質為0.5g/l,並於靜置1天後測量其復性結果) 133 表7-1-2 緩衝溶液(0.1M Tris-HCl, pH8.2)在添加2M 尿素的條件下,探討不同的復性劑組成對於直接稀釋法復性效率之影響(10倍稀釋後溶液中的蛋白質為0.5g/l,靜置1天後測量其復性結果) 135 表7-2-1進行線性梯度復性時之復性液(流動相)組成濃度 138 附錄 表A-1 不同管徑擴張係數對於流體的雷諾數、相對渦流強度以及無效體積之影響……………………………………………………………............A-53556859 bytesapplication/pdfen-US大小排阻層析法復性Size Exclusion ChromatographyProtein Refolding以大小排阻層析法進行蛋白質復性之研究A Study on the Protein Refolding Using Size Exclusion Chromatographythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52384/1/ntu-94-D90524008-1.pdf