王暉臺灣大學:電信工程學研究所蔡明達Tsai, Ming-DaMing-DaTsai2007-11-272018-07-052007-11-272018-07-052005http://ntur.lib.ntu.edu.tw//handle/246246/58643本論文主要是討論與發展以矽基單晶製程設計可應用於寬頻微波通訊系統的寬頻放大器與混波器。 在此論文中,我們研究了改善品質因素(Q)值的立體電感並實現於互補式金氧半導體(CMOS)製程。接著亦討論利用後製程來改善矽基電感的品質因素與自振頻率,包含平面、堆疊、微小型、改善Q值的微小型電感結構。從實驗結果可知與原先預期的趨勢相同。另外,於毫米波頻段的應用中,我們也討論在CMOS製程上所實現傳輸線結構,並使用薄膜微帶線與共面波導成功設計出兩個電路。 利用CMOS製程所設計的串接單級分佈式放大器第一次被成功的製作與測試。此放大器的晶片大小只有0.36 平方釐米,並達到最高的增益頻寬積由於只採用了兩級的設計與旋繞式電感。一個利用修正型衰減補償設計的串接單級分佈式放大器第一次被提出並實現在矽化鍺BiCMOS製程上,此放大器達到157 GHz的高增益頻寬積。此電路只消耗了直流功率48毫瓦而且晶片大小只有0.68平方釐米。相較於傳統的方法,利用所提出的修正型衰減補償技術可提高68%的增益頻寬積。此電路的特性也達到了以前利用更高階的製程所發表的分佈式放大器。 寬頻串接多級分佈式放大器被提出並實現於90奈米CMOS製程。第一次利用CMOS技術所設計的寬頻放大器可達到增益、頻寬、輸出功率可以與高階的化合物半導體技術(矽化鍺、砷化鎵、磷化銦)。量測結果與其他以高階製程實現的最佳分佈式放大器也在此論文作了總結。 我們也提出了應用於超寬頻無線通訊系統的修正型低功率分佈式放大器。此寬頻放大器是基於傳統分佈式放大器並於晶片內部提供低操作偏壓來達到低功率特性。這個微波單晶積體電路為可操作於3.1–10.6 GHz的超寬頻低雜訊放大器,並達到平坦的增益與雜訊指數的頻率響應、微小的晶片尺寸與最低的直流功率消耗。接著,欲應用於超寬頻通訊系統,我們亦設計另一個利用多階匹配網路的寬頻低雜訊放大器。 至於寬頻混波器,我們提出一個主動式的寬頻混波器並實現於商業0.18微米CMOS技術。當操作如混波器,與之前所發表的CMOS以及砷化鎵異質接面雙極性電晶體技術的微波單晶混波電路比較,此電路可達到最佳的特性。利用電感-電容的階梯匹配網路來達到組抗匹配,並利用注入電荷法來偏壓此吉伯特單元來達到提升整體的轉換增益。 最後,我們也提出一個寬頻的類比乘法/混波器。此電路第一次被提出同時利用電感-電容的階梯匹配網路與修正型衰減補償技術提升電路特性,並實現於矽化鍺BiCMOS技術。在之前所發表的文獻中,與矽化鍺、砷化鎵、磷化銦異質接面雙極性電晶體技術實現的混波器比較,此微波單晶積體電路達到最高的增益頻寬積 (204 GHz),也是目前利用矽單晶技術製作的寬頻混波器最好的結果。Research on the development of Si-based broadband amplifiers and mixers for microwave wideband systems is presented in this dissertation. In this dissertation, Q-improved 3-D inductor is investigated and implemented in CMOS technology. Post-processes for improving quality factor of Si-monolithic inductors are also described and discussed including planar, stacked, miniature 3-D and Q-improved miniature 3-D inductors. Experimental results show the agreement of predictable trend. For millimeter-wave applications, transmission lines in CMOS technology are also discussed and utilized to build two successful circuits in thin-film microstrip line and coplanar waveguides. For the first time, a fully integrated CMOS cascaded single-stage distributed amplifier (CSSDA) has been designed, fabricated and tested. This CMOS CSSDA demonstrated highest gain-bandwidth product in only 0.36 mm2 chip area, which is due to only 2-stage design and helical inductors. A modified loss-compensated HBT 2-CSSDA was also first realized and demonstrated high gain-bandwidth product of 157 GHz. The total power consumption is only 48 mW with a miniature chip size of 0.68 mm2. The gain-bandwidth product of the modified loss-compensated 2-CSSDA is improved about 68 % compared with the convention attenuation-compensation technique. The performance rivals the previously reported HBT distributed amplifiers in more advanced technologies. Broadband cascaded multi-stage distributed amplifier (CMSDA) is proposed and implemented in a standard-bulk 90nm CMOS technology. For the first time, a standard CMOS technology can offer gain, bandwidth, and power performances comparable to advanced compound semiconductor technologies (SiGe, GaAs, InP). The measured performances and comparison with recently reported state-of-the-art DAs in other advanced process techniques are also summarized in this dissertation. A modified low-power distributed amplifier for ultra-wideband (UWB) applications was also proposed. The broadband amplifier is based on distributed amplifier with on-chip low supply voltage operation to achieve low-power performance. The MMIC is the first 3.1-10.6-GHz UWB LNA with a good flatness of noise figure and gain frequency responses, miniature die size and lowest power consumption. Then, we also demonstrated a multi-section broadband low-noise amplifier for UWB applications. Regarding the broadband mixer, an active broadband mixer in commercial 0.18-µm CMOS technology was presented. The performance of this chip operated as a mixer represents state-of-the-art result compared with monolithic integrated mixers realized in CMOS and GaAs-based HBT technologies. The LC ladder matching networks are implemented to achieve broadband impedance matching, and the charge-injection method is also adopted to bias the Gilbert-cell core and promote the overall conversion gain. A wideband analog multiplier/mixer was demonstrated at last. A SiGe BiCMOS broadband mixer and analog multiplier using LC ladder matching networks and modified loss-compensation method were first proposed. The SiGe BiCMOS MMIC achieves the highest gain-bandwidth product of 204 GHz among the reported SiGe, InP and GaAs-based HBT analog active mixer. The performance of this circuit represents state-of-the-art result of the MMIC broadband mixers using standard silicon-based technologies.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 4 1.3 Contributions 7 1.4 Dissertation Organization 9 Chapter 2 Monolithic Inductive Components in CMOS Technology 11 2.1 Introduction of On-Chip Inductors 12 2.2 Categories of Inductors and Their Models 16 2.2.1 Characteristics and Models 16 2.2.2 Planar Inductors 20 2.2.3 3-D Inductors 24 2.3 Post-Processes 30 2.4 Transmission Lines in CMOS Technology 38 2.4.1 Transmission Lines 38 2.4.2 Thin-Film Microstrip Lines (TFMSLs) 40 2.4.3 Coplanar Waveguides (CPWs) 44 2.5 Summary 49 Chapter 3 Si-Based Traveling-Wave amplifiers 51 3.1 Overview of Conventional Distributed Amplifier 51 3.2 CMOS Cascaded Single-Stage Distributed Amplifier 53 3.2.1 Design of CMOS Cascode CSSDA 53 3.2.2 Experimental Results 65 3.2.3 Performance Summary 68 3.3 Cascaded Single-Stage Distributed Amplifier in SiGe BiCMOS Technology 69 3.3.1 Design Challenge of Traveling –wave amplifiers in HBT Technology 69 3.3.2 Proposed Modified Loss-Compensation Technique for HBT CSSDA 72 3.3.3 Experimental Results 82 3.3.4 Performance Summary 87 3.4 Cascaded Multi-Stage Distributed Amplifier in 90nm CMOS Technology 88 3.4.1 Proposed Cascaded Multi-Stage Distributed Amplifier 88 3.4.2 CMSDA in 90nm CMOS Technology 91 3.4.3 Experimental Results 102 3.4.4 Redesign and Prediction 109 3.4.5 Performance Summary 115 Chapter 4 Broadband Amplifiers for UWB Applications 117 4.1 Introduction of UWB Wireless Communication 117 4.2 Wideband Techniques 121 4.2.1 Feedback [122] 121 4.2.2 Inductive Peaking [131] 123 4.2.3 Balanced Amplifier [132] 125 4.3 Low-Power Modified Distributed Amplifiers for UWB Applications 126 4.3.1 Circuit Design 126 4.3.2 Experimental Results 135 4.3.4 Performance Summary 139 4.4 Wideband Multi-Section Matching Low-Noise Amplifier 140 4.4.1 Circuit Design 140 4.4.2 Experimental Results 147 4.4.3 Performance Summary 149 Chapter 5 Broadband Mixing Circuits 151 5.1 Fundamentals of Mixers 151 5.2 Broadband CMOS Mixer 157 5.2.1 Analog Multiplier and Mixer in FET Gilbert Cell 157 5.2.2 25-GHz Broadband Analog Multiplier and Mixer in 0.18-mm CMOS Technology 161 5.2.3 Experimental Results 167 5.2.4 Performance Summary 172 5.3 Broadband HBT Mixer Based on Loss-Compensation Technique 173 5.3.1 Design Methodology of HBT Analog Multiplier and Mixer using Gilbert Cell 173 5.3.2 Analog Multiplier and Mixer in 0.35-mm SiGe BiCMOS Technology 176 5.3.3 Experimental Results 182 5.3.4 Summary 187 Chapter 6 Conclusions 189 References 193 Publications List 2087186019 bytesapplication/pdfen-US微波單晶積體電路互補式金氧半導體射頻積體電路微波寬頻MMICCMOSRFICmicrowavebroadband應用於微波與毫米波之矽基寬頻放大器與混波器Broadband Si-based Amplifiers and Mixers for Microwave and Millimeter-wave Applicationsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/58643/1/ntu-94-D92942003-1.pdf