林唯芳臺灣大學:高分子科學與工程學研究所劉獻文Liu, Hsien-WenHsien-WenLiu2010-05-122018-06-292010-05-122018-06-292008U0001-2907200817551700http://ntur.lib.ntu.edu.tw//handle/246246/183125隨著科技的進步,發展出利用高折射率奈米粒子與高分子混摻製備有機-無機奈米複合材料之技術,此奈米複合材料除了擁有高折射率及高透明度外,更有著低熱膨脹係數、良好的熱穩定性、優秀的機械性能等,因此可作為封裝材料、光波導及光學鏡片等材料。 本研究成功以溶膠凝膠法製備粒徑低於30nm之結晶性二氧化鈦奈米粒子,並使用界面活性劑進行表面改質,使二氧化鈦能夠均勻地分散至有機溶劑中。我們討論不同改質劑對二氧化鈦在溶液狀態下的光學性質影響。 接著將表面改質的二氧化鈦與環氧樹脂摻混後製成高折射率、高穿透度的奈米複合材料。動態反應動力學的研究方面,藉由熱差微分分析儀(DSC)測量複合材料的”熱流對溫度”曲線及利用Kissinger model的理論計算,我們得知硬化反應之活化能(Ea)、反應放熱峰最大值所對應的溫度(Tp)及反應放熱量(∆H)皆隨改質二氧化鈦含量增加而下降。 光學性質研究方面,硬化後的複合材料折射率隨著二氧化鈦固含量的增加而線性上升,雖然環氧樹脂本身的折射率低,但是加入折射率高的改質二氧化鈦含量至40wt%時,奈米複合材料在波長為633nm下的折射率可由1.54提升至1.73。另外,由於改質後的二氧化鈦能均勻的分散在高分子基質中,藉由紫外光-可見光圖譜分析儀(UV-Vis spectrum)得知材料在波長範圍500-800nm時,穿透度仍達90%以上。 硬化後的奈米複合材料分別利用熱差掃描計(DSC)、熱機械分析儀(TMA)、熱重分析儀(TGA)、以及微硬度測試來分析其熱性質與機械性質。隨著改質後二氧化鈦含量的增加,材料的玻璃轉移溫度(Tg)下降且耐熱性變差;但加熱到更高溫度時,由於導入了無機粒子二氧化鈦,故殘重隨二氧化鈦含量增加而上升。Along with the evolution of technology, the fabrication of the organic-inorganic nano composite was developed by blending the nano-sized particles and the polymers. anocomposites had many advantages such as high refractive index, low thermal expansion coefficient, good thermal stability, and excellent mechanical properties. The high refractive index materials can be widely used as encapsulants , optical waveguides and optical lenses, etc. In this research, crystalline TiO2 nanoparticles with an average size smaller than 30nm were successfully synthesized via sol-gel process. After surface modification, the TiO2 nanoparticles were stabilized and well dispersed in organic solvents to form transparent TiO2 nanoparticle colloidal solutions. Through the UV-vis spectra, we studied how the surfactants influenced the optical properties of surface modified TiO2 in solution state. Then, the surface modified TiO2 nanoparticle solutions were mixed with epoxy resin to fabricate organic-inorganic hybrid materials with high refractive index and high transparency. Differential scanning calorimetry(DSC) was used to investigate the cure kinetics of the composite. We found that the activation energy (Ea) determined in accordance to Kissinger’s method, the peak temperature of exotherm (Tp), and the heat of curing(∆H) decreased with increasing concentration of surface modified TiO2. The refractive index of cured nanocomposite films was in the range of 1.54–1.73 at 633nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 40 wt %. The transmittance of the cured nanocomposite was higher than 90% because the well dispersion of surface modied TiO2 in the polymer matrix, which avoid the effect of light scattering caused by particle aggregation. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermogravimetric analysis (TGA) and microhardness tests were applied to characterize the cured nanocomposite materials.目 錄要.....................................................Ibstract................................................II錄....................................................IV目錄................................................VIII目錄..................................................XI一章緒論...............................................1.1 前言.................................................1.2 研究目的與動機.......................................1.3 研究方向.............................................2二章 文獻回顧..........................................3.1 溶膠凝膠法...........................................3.1.1 以溶膠凝膠法製備二氧化鈦奈米粒子...................4.1.2 影響鈦烷氧化物進行溶膠凝膠法反應之因子.............5.1.3 鈦烷氧化物之表面改質...............................6.2 二氧化鈦奈米粒子之表面改質...........................7.2.1 二氧化鈦奈米粒子的無機改質.........................8.2.2 無機改質應用在增進可見光下二氧化鈦催化性質.........8.2.3 二氧化鈦奈米粒子的有機改質........................10.2.4 影響二氧化鈦奈米粒子有機改質的主要因素............10.2.5 二氧化鈦表面改質後的光學性質變化..................12.3 環氧樹脂............................................16.3.1 環氧樹脂之硬化....................................16.3.2 環氧樹脂硬化過程與硬化劑之使用....................17.3.3 硬化反應與溫度的關係..............................17.3.4 環氧樹脂與胺類硬化劑之硬化反應機構................18.3.5 環氧樹脂與酸酐類硬化劑............................20.3.5.1 加入反應促進劑之硬化反應機構....................20.3.5.2 添加促進劑對材料性質之影響......................21.4 高分子複合材料......................................25.4.1 高折射率高分子複合材料............................26.4.2 高折射率高分子複合材料的發展......................27三章 實驗.............................................28.1 實驗藥品............................................28.1.1 環氧樹脂..........................................28.1.2 其他藥品..........................................29.2 實驗儀器............................................30.3 實驗步驟............................................32.3.1 二氧化鈦之表面有機改質............................32.3.1.1 以DBS表面改質之二氧化鈦合成-TiO2 (A)..........32.3.1.2 以正己胺置換DBS改質之二氧化鈦合成-TiO2 (B).....32.3.1.3 以醋酸表面改質之二氧化鈦合成-TiO2 (HOAc).......33.3.1.4 以正己胺置換醋酸改質之二氧化鈦合成-TiO2 (C)....33.3.1.5 以,1,6,6-四甲基-1,6-己二胺置換醋酸改質之 二氧化鈦合成-TiO2 (D)..........................34.3.2 環氧樹脂摻混改質二氧化鈦之奈米複合材料............35.3.2.1 實驗流程圖......................................35.3.2.2 樣品之製備......................................35.4 實驗測試項目與樣品製備方法..........................36.4.1 硬化前樣品之動力學分析............................36.4.2 硬化後樣品之光學性質分析..........................36.4.3 硬化後樣品之熱性質分析............................36.4.4 硬化後樣品之機械性質分析..........................37四章 結果與討論......................................38.1 二氧化鈦表面改質後之鑑定分析........................38.1.1 以DBS改質之二氧化鈦鑑定分析-TiO2 (A).............39.1.2 以正己胺置換DBS改質之二氧化鈦鑑定分析-TiO2 (B)...41.1.3 以醋酸改質之二氧化鈦鑑定分析-TiO2 (HOAc).........44.1.4 以正己胺置換HOAc改質之二氧化鈦鑑定分析-TiO2 (C)..47.1.5 以1,1,6,6-四甲基-1,6-己二胺置換HOAc改質之 二氧化鈦鑑定分析-TiO2 (D)........................49.2 折射率比較..........................................52.2.1 不同環氧樹脂之折射率比較..........................52.2.2 不同改質劑之二氧化鈦折射率比較....................53.3 以胺類置換醋酸前與置換後之性質比較..................54.3.1 置換前後之吸收光譜比較............................54.3.2 置換前後之光穿透度比較............................55.3.3 置換前後對於複合材料薄膜平整度的影響..............56.4 DM-TiO2-(C)-X系統之奈米複合材料性質分析.............58.4.1 DM-TiO2-(C)-X系統之動力學分析.....................58.4.2 DM-TiO2-(C)-X系統之熱性質分析.....................61.4.2.1 DM-TiO2-(C)-X系統之熱重分析....................61.4.2.2 DM-TiO2-(C)-X系統之玻璃轉移溫度分析............63.4.2.3 DM-TiO2-(C)-X系統之TMA分析.....................66.4.3 DM-TiO2-(C)-X系統之機械性質分析...................67.4.4 DM-TiO2-(C)-X系統之折射率分析.....................68.4.5 DM-TiO2-(C)-X系統之光穿透度分析...................69.5 DM-TiO2-(D)系統之奈米複合材料性質分析...............71.5.1 DM-TiO2-(D)-X系統之動力學分析.....................71.5.2 DM-TiO2-(D)-X系統之熱性質分析.....................73.5.2.1 DM-TiO2-(D)-X系統之熱重分析....................73.5.2.2 DM-TiO2-(D)-X系統之玻璃轉移溫度分析............75.5.2.3 DM-TiO2-(D)-X系統之TMA分析.....................78.5.3 DM-TiO2-(D)系統之機械性質分析.....................79.5.4 DM-TiO2-(D)系統之折射率分析.......................80.5.5 DM-TiO2-(D)系統之光穿透度分析.....................81五章 結論............................................82六章 建議............................................83考文獻................................................84 目 錄igure 2.1 Molecular structure of Ti(OR)4 precursors.......5igure 2.2 Mechanism of TiO2 photocatalytic water-splitting for hydrogen production.........9igure 2.3 The effects of the pH value on the charge states of TiO2 surfaces and the existing form of DBS groups..................................11igure 2.4 Excitation (curve c) and emission (curve d) spectra of DBS-capped TiO2 nanoparticles in DMF.........................................12igure 2.5 UV–vis spectra of (a) C11-resorcinarene, (b)C11-resorcinarene-capped TiO2 NPs in 1-propanol, and (c) C11-resorcinarene-capped TiO2 NPs in dichloromethane....................13igure 2.6 One possibility of the mechanism of yellow coloring.......................................14igure 2.7 Conversion-temperature phase diagram of thermosetting polymer..........................18igure 3.1 Flow diagram of Epoxy resin-TiO2-(X) nanocomposite..................................35igure 4.1 Size distribution of TiO2 (A) colloid solution ...............................................39igure 4.2 XRD pattern of TiO2 (A)........................40igure 4.3 TEM photo of TiO2 (A)..........................40igure 4.4 FT-IR spectra of DBS and TiO2 (A)..............41igure 4.5 Size distribution of TiO2 (B) colloid solution ...............................................41igure 4.6 XRD pattern of TiO2 (B)........................42igure 4.7 TEM photo of TiO2 (B)..........................42igure 4.8 FT-IR spectra of TiO2 (A), TiO2 (B), and hexylamine.....................................43igure 4.9 Size distribution of TiO2 (HOAc)...............44igure 4.10 XRD pattern of TiO2 (HOAc)....................45igure 4.11 TEM photo of TiO2 (HOAc)......................45igure 4.12 FT-IR spectra of HOAC and TiO2 (HOAc).........46igure 4.13 XRD pattern of TiO2(C)........................47igure 4.14 TEM photo of DM-TiO2(C)-5.....................48igure 4.15 FT-IR spectra of TiO2 (HOAc), TiO2 (C), and hexylamine....................................49igure 4.16 XRD pattern of TiO2 (D).......................49igure 4.17 TEM photo of DM-TiO2 (D)-5....................50igure 4.18 FT-IR spectrum of N,N,N'',N''-Tetramethyl-1,6- hexanediamine.................................51igure 4.19 FT-IR spectrum of TiO2 (D)....................51igure 4.20 Refractive index of cured DD-TiO2-X series at 633nm......................................53igure 4.21 Optical absorption spectra of surface modified TiO2 in solution state...............55igure 4.22 Optical transmittance spectra of the cured DM-TiO2-5.....................................56igure 4.23 AFM images of cured composites with different surface modified TiO2.........................57igure 4.24 Optical microscopy observation of cured composites with different surface modified TiO2..........................................57igure 4.25 Heat flow versus temperature for DM-TiO2(C)-(X) system:(a)X=0 (b)X=5 (c)X=10.................59igure 4.26 Kissinger’s model for DM-TiO2(C)-(X) system: (a)X=0 (b)X=5 (c)X=10.........................60igure 4.27 TGA curves of Cured DM-TiO2(C)-X series.......62igure 4.28 DSC curves of cured DM-TiO2(C)-X series.......63igure 4.29 TMA curves of cured DM-TiO2(C)-X series.......64igure 4.30 DSC curves of cured (DM+hexylamine) series....65igure 4.31 DSC curves of cured (DM+Acetic acid) series...65igure 4.32 Tg vs. surfactant added for DM system.........66igure 4.33 Microhardness measurements of DM-TiO2-(C)-X...67igure 4.34 Refractive index of cured DM-TiO2(C)-X system at 633nm...............................69igure 4.35 The transmittance spectra of cured DM-TiO2(C)-X system...........................70igure 4.36 Heat flow versus temperature for DM-TiO2(D)-(X) system:(a)X=0 (b)X=5 (c)X=10.................71igure 4.37 Kissinger’s model for DM-TiO2(D)-(X) system: (a)X=0 (b)X=5 (c)X=10.........................72igure 4.38 TGA curves of cured DM-TiO2(D)-X series.......74igure 4.39 DSC curves of cured DM-TiO2(D)-X series.......75igure 4.40 TMA curves of cured DM-TiO2(D)-X series.......76igure 4.41 DSC curves of cured (DM+ N,N,N'',N''- tetramethylhexane-1,6-diamine) Series.........77igure 4.42 DSC curves of cured (DM+Acetic acid) series...77igure 4.43 Tg vs surfactant added for DM system..........78igure 4.44 Microhardness measurements of DM-TiO2-(D)-X...79igure 4.45 Refractive index of cured DM-TiO2(D)-X system at 633nm...............................80igure 4.46 The transmittance spectra of cured DM-TiO2 (D)-X system..........................81 目 錄able 2.1 The Dispercive Property of TiO2 Modified by Propionic Acid and a Variety of Alkyl Amines....14able 2.2 Color Change of Colloid Solution When Adding a Small Amount of Bisphenol-A or Anisole..........15able 2.3 Formulas of catalysts used......................21able 2.4 DSC results on catalyst type and concentration influence on ELO–THPA systems..................22able 2.5 Molecular weight between crosslinks (Mc) for networks prepared by curing ELO with THPA (R= 0.8) and different amounts of 2MI...........23able 2.6 Results of DSC scans of DGEBA in presence of DDS/BTDA mixture................................24able 2.7 Results of DSC scans of DGEBA in presence of DDS/NTDA mixture................................24able 2.8 Results of TG/DTG Traces of Cured Epoxy Resins in Nitrogen Atmosphere..........................25able 2.9 Results of TG/DTG Traces of Cured Epoxy Resins in Nitrogen Atmosphere..........................25able 2.10 Comparisons of optical materials...............26able 2.11 Referential Literatures of High Refractive Index Composites...............................27able 4.1 Characterization of surface modified TiO2.......38able 4.2 Refractive index comparisions of various epoxy resin systems...................................53able 4.3 DSC results on TiO2 content influence for DM-TiO2(C)-X system.............................60able 4.4 TGA results on TiO2 content influence on cured DM-TiO2(C)-X system.............................62able 4.5 Tg comparison of cured DM-TiO2(C)-X series (DSC and TMA)...................................64able 4.6 Thermal expansion coefficients and Tg of cured DM-TiO2(C)-X series.............................66able 4.7 Microhardness of cured DM-TiO2-(C)-X system.....67able 4.8 DSC results on TiO2 content influence for DM-TiO2 (D)-X system............................73able 4.9 TGA results on TiO2 content influence on cured DM-TiO2 (D)-X system............................74able 4.10 Tg comparison of Cured DM-TiO2(D)-X series (DSC and TMA)..................................76able 4.11 Thermal expansion coefficients and Tg of cured DM-TiO2 (D)-X series...........................78able 4.12 Microhardness of cured DM-TiO2-(D)-X system....79application/pdf3390188 bytesapplication/pdfen-US折射率奈米複合材料溶膠-凝膠法催化劑環氧樹脂二氧化鈦refractive indexnanocompositesol-gelcatalystepoxy resintitanium dioxide高折射率及高穿透度之二氧化鈦-環氧樹脂奈米複合材料之合成與物性研究Synthesis and Physical Properties of TiO2-Epoxy Resin Nanocomposite with High Refractive Index and High Transparencythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/183125/1/ntu-97-R94549029-1.pdf