國立臺灣大學電信工程學研究所林茂昭2006-07-262018-07-052006-07-262018-07-052001-07-31http://ntur.lib.ntu.edu.tw//handle/246246/20208在某些數位傳輸通道中,如數位磁性記錄 器,或是數位光記錄器等,為了避免位元信號之間 的相互干擾,以及為了考量時序同步信號的產生, 其位元序列必須受到某些持續長度之限制。以”+ 1”及”-1”為位元之持續長度限制序列可轉換為 以”1”及”0”為位元之持續長度限制序列,稱之為 (d,k)序列,其中d 為”0”位元之最小持續長度,k 為”0”位元之最大持續長度。由許多(d,k)序列所 成之集合為(d,k) 碼, 或稱持續長度限制碼 (run-length-limited code, RLL code)。 在國科會計畫NSC81-0404-002- E -002-002 中我 們曾經設計出一些具錯誤更正能力之(d,k)碼。我們 發現這些碼在碼率, 錯誤更正能力及複雜度方面 仍然有許多改善餘地。本計畫中以多層次編碼方式 設計出具有低複雜度,高錯誤更正能力及高碼率之 持續長度限制碼。本計畫也有一個很好的附帶結 果,即是找到一個設計低複雜度二元(n,n-1)迴旋碼 之方法。For some digital communication channels, such as the digital magnetic recorder, or the digital optical recoder, to alleviate the problem of inter-symbol interference and to assist the synchronization, the associated data sequences must be subjected to some run length constraint. A run length limited sequences with symbols of “+1” and “-1” can be convert to a sequences with symbols of “1” and “0”, which is called a (d,k) sequence, where d is the minimal run length of 0’s between two consecutive 1’s and k is the maximal run length of of 0’s between two consecutive 1’s. A (d,k) code is a collection of some (d,k) sequences. Such code is also called run-length-limited (RLL) code. In the project NSC81-0404-E-002-002, we have designed some (d,k) codes with error correcting capabilities. Recently, we find that there are new techniques which can be used to further improve the error-capability, coding rates and decoding complexity of (d,k) codes. Based on the concept of multilevel coding, in this project, we propose several classes of powerful (d,k) codes with high error correcting capabilities, high coding rates and low decoding complexity. There is a by product of this project. That is we find a method to design (n,n-1) convolutional codes with low trellis complexity.application/pdf72178 bytesapplication/pdfzh-TW國立臺灣大學電信工程學研究所具錯誤更正能力的持續持續長度限制碼 (II)Run Length Limited Codes with Error Correcting Capabilities(II)reporthttp://ntur.lib.ntu.edu.tw/bitstream/246246/20208/1/892213E002121.pdf