吳紀聖Wu, Chi-Sheng臺灣大學:化學工程學研究所羅鎮嘉Lo, Chen-ChiaChen-ChiaLo2010-06-302018-06-282010-06-302018-06-282009U0001-0408200915112700http://ntur.lib.ntu.edu.tw//handle/246246/186919Z-Scheme 是一種利用兩種光觸媒進行水分解產氫的系統,而光觸媒可分為產氫觸媒與產氧觸媒兩種,分別進行產氫與產氧的反應。過去使用Z-Scheme 來進行光催化水分解反應時,都是將兩種光觸媒混合後再進行照光反應,所以產生的氣體是氫氣和氧氣的混合氣體,不但會發生逆反應,降低水分解效率,更有爆炸安全上的顧慮,而且氫氣尚須經過分離的步驟才可使用。故本實驗是以Pt/SrTiO3:Rh作為產氫觸媒,以WO3作為產氧觸媒,分開至兩個連結式的反應器中,以Fe3+/Fe2+為電子傳遞媒介在水溶液中,利用Nafion 離子交換膜隔開兩觸媒,照射可見光進行光催化水分解反應,以達到氫氣與氧氣及時分離的效果。實驗是以500W鹵素燈作為可見光源,使用經過Fe3+前處理的Nafion 膜進行反應,由結果發現確實可以做到氫氣與氧氣分開生成的效果,且與單一反應器系統相比,由於阻止逆反應的發生,使其具有更高的產氫和產氧產量,而在最佳的條件下,產氫速率可以達到2.22 μmol/g-hr且符合H2:O2=2:1的水分解化學當量比。The Z-scheme is a two-photocatalyst system for photocatalytic water splitting to produce hydrogen. The two-photocatalyst system is comprised of H2-catalyst and O2-catalyst to produce hydrogen and oxygen, respectively. Conventionally in Z-scheme, two catalysts are mixed in one reactor to perform photocatalytic water splitting, thus hydrogen and oxygen are produced as a mixture. Thus, the reverse reaction occurs to reduce the efficiency of water splitting. The cost of H2 separation is another drawback. Furthermore, a safety issue of H2-O2 explosion must be considered in the commercial process. This research used Pt/SrTiO3:Rh (H2-catalyst) and WO3 (O2-catalyst) discretely in two compartments of a connected twin reactor filled with aqueous solution. Two compartments of the twin reactor was separated by Nafion ion-exchanged membrane. Fe3+ and Fe2+ were added and served as electron-transfer mediates for redox reaction. The Nafion membrane was pretreated under Fe ion solution. The light source was 500W Halogen lamp. Under the visible-light irradiation, hydrogen and oxygen can be separately produced in two compartments simultaneously by photocatalytic water splitting. Under the optimal condition, the H2 yield reached 2.22 mole/g-h, and the molar ratio of H2/O2 was matched the stoichiometry of water splitting.摘要 1bstract II錄 III目錄 VII目錄 X一章 緒論 1二章 文獻回顧 3.1 原理 3.1.1 水分解 3.1.2 光觸媒反應之基本理論 4.1.3 光觸媒反應過程 6.1.4 反應器的種類 7 .2 影響水分解反應活性的因素 9.2.1 摻雜元素的效應 9.2.2 添加共觸媒的效應 13.2.3 添加犧牲試劑的效應 18.3光催化水分解系統 22.3.1 單觸媒反應系統 (one step system) 22.3.2 雙觸媒反應系統 (two step system , Z-Scheme system) 22三章 實驗方法 29.1 實驗藥品與儀器設備 29.1.1 藥品 29.1.2 器材 31.2 觸媒之製備 32.2.1固態高溫熔融法( Solid-State Fusion Method ) 32.2.2光催化沈積法( Photocatalytic Deposition Method ) 32.3 離子交換膜的前處理 35.4 觸媒特性分析原理與方法 37.4.1 儀器型號與規格 37.4.2 X光繞射儀(X-Ray Diffractometer,XRD) 38.4.3 紫外光-可見光光譜儀( UV-Visible Spectrometer,UV-VIS ) 41.4.4 場發射掃描式電子顯微鏡 ( Field Emission Scanning Electron Microscope,FE-SEM ) 43.4.5 能量分散光譜儀( Energy Dispersive Spectrometer,EDS ) 44.4.6 氣相管柱層析儀–熱導偵測器( GC–TCD ) 44.5 光催化活性檢測 46.5.1 檢量線製作 46.5.1.1 氧氣與氮氣檢量線 46.5.1.2 氫氣檢量線 50.5.2 光催化水分解活性實驗-單一反應器系統( Single Reactor System ) 53.5.3 光催化水分解活性實驗-分離式雙反應器系統 ( Twin Reactor System ) 60.5.4 訊華軟體-SISC色層分析數據處理系統 68四章 觸媒特性分析與討論 69.1 Pt/SrTiO3:Rh光觸媒 69.2 觸媒檢測 71.2.1 XRD 71.2.2 UV-VIS 73.2.3 SEM 76.2.4 EDS 78.3 Nafion離子交換膜定性分析 79五章 光催化水分解活性實驗結果與討論 82.1 單一反應器系統( Single Reactor System ) 82.1.1 空白實驗 82.1.2 光催化水分解活性實驗 84.1.2.1 三價鐵離子溶液的反應 84.1.2.2 二價鐵離子溶液的反應 86.1.2.3 不同價數鐵離子溶液之活性比較 88.2 分離式雙反應器系統( Twin Reactors System ) 90.2.1光催化水分解活性實驗-有利條件 90.2.2光催化水分解活性實驗-不利條件 92.2.3觸媒失活反應的測試 93.2.4不同反應器系統的活性比較 95六章 結論 97考文獻 98人小傳 10110862460 bytesapplication/pdfen-USZ-Scheme光催化水分解可見光觸媒產氫技術photocatalytic water splittingvisible light irradiationhydrogen evolution[SDGs]SDG7Z-scheme 光催化進行水分解產氫Hydrogen production from water splitting by Z-scheme photocatalysisthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/186919/1/ntu-98-R96524033-1.pdf