黃漢邦臺灣大學:機械工程學研究所葉兆豐Ip, Sio-FongSio-FongIp2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61162本文之主要目的,是設計與控制一具有四個自由度之微操作機械手臂,以適用於微米等級應用如微組裝及微注射。為達到高解析度、工作空間大、體積小的目的,本文提出一兼具傳統串聯及並聯式機構優點之並聯混合式機構。相對於傳統機械手臂,此微操作機械手臂的所佔空間較少,適合操作於微型工廠。 在設計方面,主要分為運動設計及機構設計。運動設計的目的在於求得符合需求的桿件長度,機構設計則主要考量機構之干涉、變形及組裝困難以設計出一實體機構。此外並利用電腦輔助工程設計軟體來模擬致動器所需的轉速及扭力,以作為選擇驅動元件的準則。本文亦推導及驗證微操作機械手臂之順向、逆向的運動學及動力學,並應用於機械手臂的運動規劃及控制上。 透過個人電腦、數位訊號處理器及可程式邏輯閘的整合,以實現微操作機械手臂之多軸控制。此外並完成馬達驅動器電路的設計與製作。實驗結果顯示此微操作機械手臂適用於微米等級操作之應用。This thesis presents the development of a micromanipulator for micro-scale manipulation tasks such as microassembly and cell injection. The design of the micromanipulator is based on task requirements. The micromanipulator provides four degrees of freedom (DOFs) for dexterous motion. To achieve high resolution, large workspace and compact structure, a hybrid configuration which is a combination of a parallel selectively compliant assembly robot arm (SCARA) configuration and a serial mechanism was proposed. Due to its compact size, the micromanipulator can operate in a microfactory. In kinematic design, a novel method was proposed to select kinematic parameters so that the prescribed workspace can be achieved. To determine a unique set of kinematic parameters, kinematic performance indices were also introduced. Analyses of required angular velocity and torque of each actuated joint for a typical task were performed and used as a criterion for selection of actuating components. Based on the mechanical design, kinematics and dynamics in both forward and inverse cases were derived and verified. Trajectory planning based on modified tension spline (MTS) was performed for tracking of a desired Cartesian path. Digital signal processor (DSP) and field programmable gate array (FPGA) were employed to implement the multi-joint control of the micromanipulator. Driver modules were also developed. Finally, a prototype of the micromanipulator was fabricated. Experimental results demonstrate the feasibility of the proposed system in micromanipulation.List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works 4 1.2.1 Literature Survey of Micromanipulation Systems 4 1.2.2 Literature Survey of High Precision Manipulators 5 1.3 Overview of the Thesis 8 1.4 Contributions 9 Chapter 2 Mechanical Design of the Micromanipulator 11 2.1 Task Requirements 12 2.2 Kinematic Configuration 14 2.3 Dexterity Measures of Manipulators 16 2.3.1 Introduction 16 2.3.2 Jacobian Matrix 17 2.3.3 Condition number 17 2.3.4 Manipulability 18 2.3.5 Isotropy 21 2.4 Kinematic Design 22 2.4.1 Determine Parameters by Prescribed Workspace 23 2.4.2 Determine Parameters by Performance Indices 25 2.5 Detailed Mechanical Design 30 2.5.1 Mechanical Structure of Base 31 2.5.2 Linear Stage 32 2.5.3 Mechanical Structure of 3-DOF Planar Mechanism 34 2.6 Arrangement of Photomicrosensors 42 2.6.1 Initialization 42 2.6.2 Protection 44 2.7 Motor Selection 46 2.7.1 Analysis of Required Angular Velocities 47 2.7.2 Analysis of Required Torques 49 2.7.3 Specifications of Selected Actuators 52 2.8 Deformation Analysis 53 2.9 Fabrication of the Micromanipulator 55 Chapter 3 Kinematics and Dynamics of the Micromanipulator 56 3.1 Forward Kinematics 56 3.2 Inverse Kinematics 61 3.3 Differential Kinematics 62 3.4 Evaluation of Workspace and Resolution 63 3.4.1 Workspace 63 3.4.2 Resolution 64 3.5 Forward Dynamics 67 3.6 Inverse Dynamics 75 3.7 Verification of Dynamic Model 77 3.7.1 Verification of Forward Dynamic Model 77 3.7.2 Verification of Inverse Dynamic Model 79 Chapter 4 Trajectory Planning and Control of the Micromanipulator 81 4.1 Trajectory Planning 81 4.1.1 Modified Tension Spline 82 4.1.2 Trajectory Planning of the Micromanipulator 85 4.2 Controller Design 89 4.2.1 Transfer Function of a Single Joint 89 4.2.2 Position Controller 93 4.3 Control System of the Micromanipulator 97 4.3.1 Central Control Module 98 4.3.2 Interface Module 99 4.3.3 Driver Module 106 Chapter 5 Simulation and Experiments 110 5.1 Simulation 110 5.2 Experiments on Position Control 114 5.3 Microgripper 117 5.4 Integration of the Micromanipulator with the Microgripper 118 Chapter 6 Conclusions 119 6.1 Conclusions 119 6.2 Future Works 120 References 1212855872 bytesapplication/pdfen-US微操作混合式機械手臂機構設計運動學動力學軌跡規劃定位控制micromanipulationhybrid manipulatormechanical designkinematicsdynamicstrajectory planningposition control多軸微操作機械手臂之研製Development of a Micromanipulator with Multiple Degrees of Freedomthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61162/1/ntu-95-R93522811-1.pdf