2023-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/695342視網膜是中樞神經系統中一個複雜而脆弱的感光部分,容易患導致永久性視力喪失的退行性疾病,至今沒有行之有效的治療策略存在以治療或逆轉退行性病症。多功能幹細胞,視網膜前驅細胞和成體幹細胞則是是用於細胞移植的主要細胞來源。然而,利用細胞懸浮液注射的視網膜移植效果仍有許多阻礙,注射細胞懸浮液僅使有限的細胞存活且缺乏細胞間與患部之整合。組織工程技術專門用於構建可生物降解或不可降解的聚合物支架可將細胞培養成單層並構建可植入移植物。工程化的細胞結構與形成的細胞外基質一起,可以將細胞固定在適當的位置使生存更容易,更好地整合,並改善視覺功能。本研究微奈米尺度設計多功能水膠基底與之平台應用於視網膜組織工程,我們首先將製備多種明膠膠交聯或改質系統,並針對不同交聯方式,利用溫度梯度來製備有方向性之細胞支架,由於感光細胞具有方向性,我們希望能夠利用微奈米溝槽來使感光細胞形成具有生理象徵性。另外,聚多巴胺(PDA)奈米顆粒可以作為一種治療性且攜帶薑黃素(Curcumin, 簡稱Cur)之藥物傳輸系統,PDA-Cur奈米顆粒可先通過 π-π * 堆疊相互作用將Cur加載到 PDA NPs中。一方面可以提高薑黃素(Cur)的水溶性和穩定性,也可加乘PDA與薑黃素的ROS清除能力;進而用於修復與減緩視網膜受損組織。PDA NPs的好處之一是也可與GelCA上的苯環再進行π-π * 堆疊,形成穩定鍵結,成為官能基修飾之功能性水凝膠。此Cur@PDA可 1.單獨作為奈米藥物使用,2.可承載於可注射,具自修復功能水凝膠如Gel.mTG系統內,亦可3.製備成Cur@PDA functionalized GelCA (薑黃素@聚多巴胺之肉桂酸酯化明膠), 可進行光交聯,可3D列印,並具有抗氧化,抗發炎功能,此薑黃素@聚多巴胺之肉桂酸酯化明膠Cur@PDA functionalized GelCA多功能化設計為本研究計畫之重點。Cur@PDA-GelCA將在進行小鼠體內生物相容性實驗後進行治療大鼠視網膜損傷模型之實驗,利用視網膜下手術將Cur@PDAfunctionalized GelCA植入或注射至視網膜下腔,並觀察其減少視網膜損傷之功能和組織學分析。我們也預期此技術與開發出的功能性水凝膠可提供未來利用於移植iPS-derived retina cells之支架材料。 The retina, is prone to degenerative diseases that lead to permanent vision loss. No proven therapeutic strategies exist to treat or reverse the degenerative condition. Pluripotent stem cells, retinal progenitor cells, and adult stem cells are the main source of cell therapy for cell transplantation. However, successful retinal transplantation using cell suspension injection remains hampered by limited cell survival and lack of cell integration. Thus, recent advances in materials science are helping to provide biomimetic scaffolds, and the growth of cells as intact monolayers or sheets on biomaterial scaffolds for transplantation into the eye has been documented. Such implants were a more promising approach than cell suspension injections. Tissue engineering techniques are specialized in constructing biodegradable or non-degradable polymer scaffolds that can grow cells into monolayers and build implantable grafts. The engineered cellular structures, together with the formed extracellular matrix, can hold cells in place for easier survival, better integration, and improved visual function. In this study, we will design a multi-functional hydrogel substrate at the micro-nano scale and apply it to retinal tissue engineering. We will first prepare a variety of gelatin crosslinking or modification systems and use temperature gradients to prepare directionality. As the photoreceptor cells are directional, we hypothesize that the use of micro-nano grooves facilitates the formation of photoreceptor cells physiologically symbolic. So far, most retinal cell matrix materials are electrospun structures, and there is no published research on hydrogel materials that can induce retinal photoreceptor cells. Preparation of a hydrogel material with directional properties to induce the orientation of retinal cells. In addition, polydopamine (PDA) nanoparticles can be used as a therapeutic drug delivery system that carries Curcumin (Cur). Cur@PDA nanoparticles can first load Cur into the PDA NPs. On the one hand, it can improve the water solubility and stability of curcumin (Cur) and multiply the ROS scavenging ability of PDA and curcumin. It is anticipated that Cur@PDA NPs can repair and slow down the damaged retinal tissue. One of the benefits of PDA NPs is that it can also perform π-π* stacking with the benzene ring on GelCA to form a stable bond and become a functional hydrogel modified with functional groups. This Cur@PDA can be 1.) used alone as a nano drug, 2. can be carried in an injectable, self healing hydrogel such as Gel.mTG system, or 3. can be prepared into Cur@PDA functionalized GelCA (curcumin @polydopamine`s cinnamic esterified gelatin), which can be photocrosslinked, 3D printed, and has anti-oxidation and anti inflammatory functions, this curcumin @polydopamine - cinnamic esterified gelatin (Cur@PDA functionalized GelCA) is the focus of this research project. Cell experiments will optimize Cur@PDA-GelCA, and physicochemical properties will be used to treat rat retinal injury models after in vivo biocompatibility experiments in mice. Cur@PDA functionalized GelCA will be treated by subretinal surgery Implanted or injected into the subretinal space, and observe its function and histological analysis of reducing retinal damage. We expect that Cur@PDA functionalized GelCA animal experiments and clinical possibilities can provide scaffolds for transplanting iPS-derived retina cells in the future.國立臺灣大學學術研究生涯發展計畫-桂冠型研究計畫【開發具微奈米溝槽、搭載奈米藥物之多功能水膠基底平台應用於視網膜組織工程】