林正芳臺灣大學:環境工程學研究所吳佩勳Wu, Pei-HsunPei-HsunWu2010-05-102018-06-282010-05-102018-06-282007U0001-2207200821372100http://ntur.lib.ntu.edu.tw//handle/246246/181553由於底渣材料具良好的工程特質,一如天然骨材,已有歐洲先進國家如荷蘭、法國等國,將底渣作為道路鋪面之級配,取代部份骨材之應用實績,無產生對環境不良負荷影響。為研究焚化底渣再利用於道路舖面滲出水特性,因此,於台北縣萬里鄉以底渣作為道路路基及骨材,鋪設四段研究試驗道路,進行現場實體溶出監測環境以與實驗室模擬溶出試驗,據此研究成果,將可提供為國內推廣底渣應用於鋪面工程之參考。本特性分析方面,重金屬總量則以Cu(2800~7700 mg/kg)以及Zn(2700~4200 mg/kg)含量較高,其次為Pb(900~1700 mg/kg);實驗室模擬部分可分為動態管柱實驗以及半動態實驗:動態管柱試驗採用e級配(加藥與未加藥)、底渣(未處理)、水洗e級配、水洗底渣以及水洗底渣和天然山級配之不同道路配比(100/0、80/20、20/80、40/60、60/40、0/100),結果顯示,TOC、氯鹽、重金屬各項指數,均為初期有最大溶出,而隨著時間的增加,大約10天後,已無明顯的溶出。經過水洗程序後之樣品約可以減少一半以上之氯鹽及TOC,重金屬溶出部分亦有相當程度的減少;半動態試驗採用水洗e級配、添加0.2%乾式穩定劑e級配、添加0.6%乾式穩定劑e級配、e級配(未加藥)、水洗底渣,則以Cu的溶出量最大(小於180 mg/kg),Pb次之(小於140 mg/kg),約在五天後已無明顯之溶出,亦可見管柱實驗與半動態實驗,擁有相同之趨勢。實場監測部分,除道路鋪設完成後,於94年五月採樣外,另於95年7/2至96年1/19日中採集滲出水、地下水以及路面沖刷水,分析其pH值、導電度、氯鹽、TOC以及重金屬濃度,已有下降趨緩之趨勢,且所得知各項監測數值,並無明顯之溶出情形。94年5月路面鋪設,至今已近兩年,相當於本實驗室管柱淋洗約16天,而將現場監測數據與實驗室數據做比較,現場各項數值已趨向微量溶出,與實驗室模擬大致上符合。Re-utilization of incinerator bottom ash was already considered many years ago. A possibility of reusing bottom ash was actually being taken into account in some European countries. Because the bottom ash material has engineering properties and low assessment of the environmental effect, it is possible to use the bottom ash as an aggregate substitute in road construction element. So we had an experimental road which used incinerated bottom ash as aggregate material in Wanli Township, Taipei County and monitored the environment in Wanli. Moreover, the study also simulated the leaching of acid rain and analyzed leaching solution of bottom ash.n the total amount of heavy metal, Cu (2800~7700 mg/kg) and Zn (2700~4200 mg/kg) were highest, second was Pb (900~1700 mg/kg). There are two parts of the simulated experiment. One is dynamic column test and the other is semi-dynamic leaching test. In both two simulated experiment, they are aimed to find out the concentration of heavy metal, TOC and Cl- which were the largest in the beginning and were lower as time goes. There was trace dissolution about 10 days later and accumulation of heavy metal which was present to be small concentration (Cu<180 mg/kg; Pb<140 mg/kg) as compared with total amount of heavy metal. Not only were the leaches of TOC and Cl- reduced about a half after the washing process but also the leaches of heavy metal were also lower after the washing process. On site, the monitoring of environment included the leaching of road, ground water, washing water of road surface, and rainfall. The value of pH, conductivity, TOC and Cl- in road tended to be small and stable. Furthermore, all value of heavy metal was not significant.t has been almost two years equal to 16 days in column test since the road established. It was similar to contrast the result of simulated experiment in laboratory and on site environmental monitoring.摘要 ibstract ii謝 iv錄 v目錄 vii目錄 viii一章 前言 1.1 研究緣起 1.2 研究目的 1.3 研究內容及項目 2二章 文獻回顧 3.1 都市垃圾焚化爐灰渣之來源與種類 3.2 焚化底渣特性分析 5.2.1 焚化底渣物理特性 5.2.2 焚化底渣化學特性 6.3 垃圾焚化底渣之水洗特性分析及其影響 8.4 底渣中重金屬之含量與磷酸鹽穩定效果 10.4.1 焚化底渣之重金屬含量 10.4.2 焚化底渣之重金屬以磷酸鹽穩定效果 13.5 底渣之回收潛能與再利用分析 13.5.1 焚化底渣之回收潛能 13.5.2 國外焚化灰渣再利用之現況 15.6 都市垃圾焚化底渣之滲出機制 16.6.1 酸雨對重金屬溶出之影響 17.6.2 重金屬溶出試驗評估程序 17三章 工作內容與方法 20.1 實場設計及研究對象 20.2 研究及監測方法 25.3 實驗流程圖 32四章 結果討論 35.1 道路鋪設前後之土樣採樣分析結果 35.1.1 道路鋪設時所採集之土樣基本特性分析 37.1.2 道路鋪設時採集之土樣實驗室模擬管柱試驗 38.1.2.1 現場採集土樣之管柱試驗條件 38.1.2.2 現場採集土樣之管柱實驗結果分析 39.2 配合現場之焚化底渣再利用於道路舖面滲出水特性研究 50.2.1 再利用材料基本性質研究 50.2.2 實驗室模擬試驗 51.2.2.1 動態管柱實驗 51.2.2.1.1 動態管柱實驗試驗配置與條件說明 51.2.2.1.2 動態管柱試驗結果說明 53.2.2.2 半動態試驗 65.2.3 現場實體試驗之滲出水監測 68.3 現場雨量監測 71.4 現地與實驗室之重金屬溶出量和速率與時間的關係 76五章 結論與建議 78.1 結論 78.2 建議 80六章 參考文獻 81錄 87application/pdf1472533 bytesapplication/pdfen-US焚化底渣道路溶出試驗監測再利用incinerator bottom ashroadleaching testmonitoringreuse都市焚化廠底渣再利用於鋪面工程及現地環境監測Reuse of Municipal Incinerator Bottom Ash as Road Base Material and on Site Environmental Monitoringthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/181553/1/ntu-96-R94541101-1.pdf