電機資訊學院: 電子工程學研究所指導教授: 管傑雄林鈞暉Lin, Jun-HueiJun-HueiLin2017-03-062018-07-102017-03-062018-07-102016http://ntur.lib.ntu.edu.tw//handle/246246/276004氮化鎵/氮化鋁鎵的異質結構因擁有高濃度的二維電子氣(2DEG),故具有相當卓越的載子傳輸特性和較高的電子遷移率,可被應用在高功率、高頻率的電路操作之中,是目前極為熱門的半導體材料之一。 在本篇論文中,主要利用化學有機氣相沉積以及側向磊晶技術成長高品質的氮化鎵,並利用來製作氮化鋁鎵/氮化鎵高電子遷移率電晶體,我們利用濕蝕刻蝕刻坑洞密度的方式證實側向磊晶技術確實提高了氮化鎵的磊晶品質,並且透過設計遮罩圖案的方式,獲得不同錯位差排密度的氮化鎵,透過在不同錯位差排密度的材料上製作高電子遷移率電晶體,找出缺陷密度與元件效能之相關性。 利用側向磊晶技術,成功將原先蝕刻坑洞密度為1.05x107 cm-2之氮化鎵降低至蝕刻坑洞密度為1.58x106 cm-2 ,同時電晶體元件的最大汲極飽和電流從380 mA/mm 提升至410 mA/mm,直流導通阻抗從12.7Ω mm降低至6.18ΩAlGaN/GaN heterojunction has outstanding carrier transport property and high electron mobility because of the existence of two-dimensional electron gas with high concentration , and we can apply to high-power and high-frequency circuit operation. Currently , GaN is one of the most attractive semiconductor material. In this study, we primarily use ELOG technology to epitaxy high-quality GaN and fabricate AlGaN/GaN HEMTs with MOCVD. We confirm that ELOG technology really enhance the epitaxy quality by EPD wet etching method, and achieve different dislocation density on GaN by way of designing mask patterns . We find out the relationship between defect density and device performance by manufacturing HEMTs on different dislocation-density material. By using ELOG technology, we successfully reduce EPD from 1.05x107 cm-2 to 1.58x106 cm-2. At the same time , we enhance the maximum drain current (Id,max)from 380 mA/mm to 410 mA/mm, reduce on-resistance(Ron)from 12.7Ω mm to 6.18Ω論文使用權限: 不同意授權側向磊晶技術氮化鋁鎵/氮化鎵蝕刻坑洞密度錯位差排導通阻抗ELOGAlGaN/GaNEPDdislocationon-resistance藉由側向磊晶技術降低氮化鋁鎵/氮化鎵高電子遷移率電晶體之錯位密度Effects of dislocation reduction on AlGaN/GaN HEMTs using ELOG technologythesis10.6342/NTU201603130