林敬二臺灣大學:化學研究所劉宇智Liu, Yu-ChihYu-ChihLiu2007-11-262018-07-102007-11-262018-07-102006http://ntur.lib.ntu.edu.tw//handle/246246/51810本論文選擇環境污染物與藥物來探討偵測靈敏度的增強,著重小分子在毛細管電泳的線上濃縮技巧,主要分為三部份來探討線上濃縮的機制: 第一部份是討論環境污染物如硫甲基-s-三口井類除草劑(methylthio-s-triazine herbicides)在正向樣品濃縮模式的濃縮機制。添加陰離子界面活性劑如正十二烷基硫酸鈉(Sodium Dodecyl Sulfate, 簡稱SDS)於pH 9.0的硼酸鹽作為分離緩衝液,對其進行系統地研究。尋得理想的分離緩衝液條件為添加20 mM SDS於pH 9.0的20 mM硼酸鹽緩衝液,此時樣品基質組成為30 mM硼酸鹽緩衝液。當添加SDS濃度從10 ~ 150 mM時,分析物的吸收度顯現兩個最大值。分析物的濃縮效率與SDS的結合常數有關,在理想的電泳條件下,terbutryn可濃縮1000倍。當進樣時間為180秒且用UV偵測器偵測時,simetryn、ametryn、prometryn 與terbutryn的偵測極限分別為61、25、11和2 ng/mL (S/N=3)。 第二部份是探討三口井類除草劑在掃集(sweeping)技巧的濃縮。當添加陰離子界面活性劑於pH 5.6的磷酸鹽緩衝液作為分離緩衝液,可基線分離四個三口井類除草劑的最大進樣時間為480秒,此時理想條件為樣品基質是50 mM磷酸鹽緩衝液;分離緩衝液組成為添加50 mM SDS和20 % MeOH於pH 5.6的50 mM磷酸鹽緩衝液。分析物在掃集模式的有效濃縮體積為正向樣品濃縮模式的2.67倍,乃因掃集模式同時進行樣品堆積與移除樣品基質,降低樣品基質對樣品堆積的干擾。當使用UV偵測器偵測時,simetryn、ametryn、prometryn與terbutryn的偵測極限分別為3.0、2.0、1.2和1.5 ng/mL (S/N=3)。 第三部份是以pH接合-掃集模式(pH junction-sweeping)來探討啡口賽口井類藥物(Phenothiazines)的對掌分離與濃縮,並以添加多種環糊精(包括sulfated β-cyclodextrin (S-β-CD)、β-CD、HP-β-CD、DM-β-CD和γ-CD)於pH 3.0的磷酸鹽做為分離緩衝液。結果顯示在使用單環糊精做為對掌選擇試劑時,γ-CD對四種啡口賽口井類對掌異構物有最佳的對掌分離,包括promethazine、ethopropazine、trimeprazine和thioridazine;然而分離緩衝液中同時使用多種環糊精(S-β-CD/β-CD/γ-CD)系統時,可有效濃縮與對掌分離長達1800秒注入時間的啡口賽口井類對掌異構物。此超長樣品注入體積約佔毛細管有效長度的98.9 %或98.9 cm,可增強當使用雙環糊精(S-β-CD/β-CD)對掌分離分析物thioridazine (5a)的弱吸收峰訊號。Environmental pollutants and pharmaceutical compounds were selected for studying the enhancement of detection sensitivity. In this dissertation, on-line concentration of small molecules on capillary electrophoresis studied is consisting of three parts: In the first part, we focus on the stacking of environmental pollutants, such as methylthio-s-triazines herbicides, in normal stacking mode using sodium dodecyl sulfate (SDS) as an anionic surfactant and borate electrolyte at pH 9.0. The sample matrix used for concentration of neutral analytes is 30 mM borate electrolyte, and the optimal electrophoretic system for separation consists of 20 mM SDS and 20 mM borate buffer at pH 9.0. Interestingly, two maxima were observed in the plot of absorbance versus SDS concentration in the range 10-150 mM. Stacking efficiency of each individual analyte depends on its binding constant to SDS micelles, terbutryn can afford about 1000-fold enhancement under an optimal electrophoretic system. With this stacking mode, the sample solution can be injected up to 180 s, and the limits of detection (S/N=3) of terbutryn, prometryn, ametryn and simetryn determined to be 61, 25, 11 and 2 ng / mL, respectively. In the second part, we focus on the stacking of s-triazines herbicides using sweeping technique. The separation buffer consisting of anionic surfactant and phosphate electrolyte at pH 5.6 was used. The injection time of 480 sec can be achieved for baseline separation of four s-triazines. The concentrations of phosphate buffer at 50 mM was used as the sample matrix, while separation buffer consists of 50 mM phosphate electrolyte and 50 mM SDS containing 20 % methanol at pH 5.6, sample matrix and separation buffer were optimized. With this sweeping mode, the sample solution can be injected up to 480 s, and the limits of detection (S/N=3) of terbutryn, prometryn, ametryn and simetryn determined to be 3.0, 2.0, 1.5 and 1.2 ng / mL, respectively, with UV detection. In the third part, the enantioseparation and stacking of phenothiazine enantiomers based on the pH junction-sweeping mechanism were investigated. Phenothiazine samples were dissolved in water at neutral pH, whereas phosphate buffer at pH 3.0 containing different type of cyclodextrins (CDs), such as randomly sulfated β-CD (S-β-CD), β-CD HP-β-CD, DM-β-CD and γ-CD, was used as separation buffer. γ-CD shows the best enantioresolution for four phenothiazines, including promethazine, ethopropazine, trimeprazine and thioridazine. Effective enantioseparation and stacking of phenothiazine enantiomers could be achieved with the injection time of 1800 sec, when multi-cyclodextrins, such as S-β-CD / β-CD / γ-CD was employed. Due to extremely large injection volume (a filling of 98.9 % effective length), the signal of thioridazine (5a) could be greatly enhanced.目錄 中文摘要 I 英文摘要 III 目錄 V 圖表目錄 IX 第一章 序論 1.1 毛細管電泳的發展史 1 1.2 毛細管電泳分離的原理 3 1.2.1 電泳遷移率 3 1.2.2 電雙層與Zeta電位 4 1.2.3 電滲流與流型 5 1.2.4 分離效率 7 1.3 毛細管電泳的分離模式 8 1.3.1 毛細管區帶電泳法(CZE) 9 1.3.2 微胞電動力層析法(MEKC) 10 1.3.3 毛細管凝膠電泳法(CGE) 11 1.3.4 毛細管等電聚焦電泳法(CIEF) 11 1.3.5 毛細管等速電泳法(CITP) 12 1.3.6 毛細管電層析法(CEC) 12 1.4 毛細管電泳的注入方式 13 1.4.1 水動力注入法 13 1.4.2 水靜力注入法 14 1.4.3 電動力注入法 14 1.5 毛細管電泳儀的裝置 15 1.6 毛細管電泳之未來展望 15 1.7 本章參考文獻 18 第二章 三口井類除草劑在正向濃縮模式之分離與線上濃縮之研究 2.1 簡介 29 2.2 線上樣品濃縮的原理與相關計算 31 2.3 線上樣品濃縮的技巧 35 2.3.1 正向堆積模式(NSM) 36 2.3.2 電極極性逆向堆積模式(REPSM) 37 2.3.3 反向遷移微胞堆積(SRMM) 38 2.3.4 增強電場樣品進樣(FESI) 38 2.3.5 以反向遷移微胞增強電場樣品進樣(FESI-RMM) 39 2.3.6 使用反向遷移微胞與水之堆積(SRW) 39 2.3.7 掃集(Sweeping) 40 2.3.8 陽離子選擇性注射法與掃集之結合模式(CSEI-sweeping) 41 2.3.9 動力pH接合-掃集 42 2.4 實驗 43 2.4.1 實驗藥品 43 2.4.1.1 分析物 43 2.4.1.2 緩衝溶液 43 2.4.1.3 緩衝溶液添加劑 44 2.4.1.4 其他試劑與藥品 44 2.4.2 實驗儀器 45 2.4.2.1 毛細管電泳儀 45 2.4.2.2 毛細管柱 45 2.4.2.3 實驗室型酸鹼度/氧化還原電位計 46 2.4.2.4 實驗室型電導度測定計 46 2.4.3 實驗方法 46 2.4.3.1 毛細管的處理 46 2.4.3.2 溶液的配製 47 2.4.3.3 毛細管電泳之相關計算 47 2.5 結果與討論 48 2.5.1 樣品基質效應 48 2.5.2 緩衝液濃度效應 50 2.5.3 陰離子界微胞濃度效應 51 2.5.4 進樣時間對樣品濃縮的影響 52 2.5.5 線上樣品濃縮機制 53 2.5.6 偵測極限與再現性 54 2.6 結論 56 2.7 參考文獻 57 第三章 三口井類除草劑在掃集模式之分離與線上濃縮之研究 3.1 簡介 89 3.1.1 界面活性劑濃度低於臨界微胞值 89 3.1.2 界面活性劑濃度高於臨界微胞值 93 3.2 實驗 96 3.2.1 實驗藥品 96 3.2.2 實驗儀器 96 3.2.3 實驗方法 96 3.3 結果與討論 97 3.3.1 緩衝液pH效應 97 3.3.2 有機修飾劑對分離的影響 98 3.3.3 陰離子界面活性劑的濃度效應 99 3.3.4 樣品基質效應 99 3.3.5 樣品區帶長度效應 100 3.3.6 偵測極限與再現性 101 3.4 結論 102 3.5 參考文獻 103 第四章 以環糊精修飾毛細管區帶電泳法對啡口賽口井類對掌異構物分離與線上濃縮之研究 4.1 簡介 111 4.1.1 分析物簡介 113 4.1.2 環糊精性質簡介 115 4.1.3 以環糊精分離對掌異構物的原理 117 4.1.4 鹼性溶質在環糊精存在下的遷移行為 118 4.1.5 毛細管區帶電泳法的線上濃縮模式 121 4.1.5.1 場放大樣品堆積(FASS) 121 4.1.5.2 大量體積樣品堆積(LVSS) 122 4.1.5.3 間接的pH堆積(pH-mediated stacking) 123 4.2 實驗 123 4.2.1 實驗藥品 123 4.2.1.1 分析物 123 4.2.1.2 緩衝溶液 123 4.2.1.3 緩衝溶液添加劑 124 4.2.1.4 其它試藥與藥品 124 4.2.2 實驗儀器 124 4.2.3 實驗方法 124 4.2.3.1 毛細管的處理 124 4.2.3.2 溶液的配製 125 4.3 結果與討論 126 4.3.1 電解質濃度對啡口賽口井類對掌異構物解析度的影響 126 4.3.2 單環糊精對啡口賽口井類分析物對掌分離的影響 128 4.3.3 雙環糊精對啡口賽口井類分析物對掌分離的影響 129 4.3.4 進樣時間與溫度對分離啡口賽口井類對掌異構物的影響 130 4.3.5 線上樣品濃縮機制 131 4.4 結論 134 4.5 參考文獻 135 圖表目錄 圖 1-1 毛細管內表面之電雙層模型 23 圖 1-2 HPLC與CE流型之比較 24 圖 1-3 毛細管電泳儀的儀器裝置 25 圖 1 4 區帶變寬的說明圖 26 表 1-1 毛細管電泳的注入技術 27 表 1-2 CE與HPLC的比較 28 圖 2-1 NSM模式的濃縮機制 65 圖 2-2 REPSM模式的濃縮機制 66 圖 2-3 SRMM模式的濃縮機制 67 圖 2-4 FESI模式的濃縮機制 68 圖 2-5 FESI-RMM模式的濃縮機制 69 圖 2-6 SRW模式的濃縮機制 70 圖 2-7 CSEI-掃集模式的濃縮機制 71 圖 2-8 掃集模式的濃縮機制 72 圖 2-9 動力pH接合-掃集模式的濃縮機制 73 圖 2-10 在pH 9.0時,添加不同硼酸鹽濃度於樣品基質中之電泳圖 74 圖 2-11 在pH 9.0時,添加不同硼酸鹽濃度於樣品基質中之吸收峰高趨勢圖 75 圖 2-12 在pH 9.0時,添加不同硼酸鹽濃度於樣品基質中之相對半高峰寬趨勢圖 76 圖 2-13 硼酸鹽濃度對硫甲基三口井類除草劑的分離與堆積效率的影響 77 圖 2-14 在pH 9.0的分離緩衝液中添加不同SDS濃度之電泳圖 78 圖 2-15 在pH 9.0的分離緩衝液中添加不同SDS濃度之吸收高峰寬趨勢圖 79 圖 2-16 在pH 9.0的分離緩衝液中添加不同SDS濃度之相對半高峰寬趨勢圖 80 圖 2-17 進樣時間與分析物吸收峰高的關係 81 圖 2-18 電動力時間對硫甲基三口井類除草劑的遷移行為與峰形的影響(I) 82 圖 2-19 電動力時間對硫甲基三口井類除草劑的遷移行為與峰形的影響(II) 83 圖 2-20 陰離子界面活性劑的掃集機制 84 圖 2-21 不同分離條件的偵測靈敏度 85 表 2-1 硫甲基三口井類除草劑的化學結構和pKa值 86 表 2-2 在MEKC模式中使用SDS微胞的線上濃縮技巧的條件 87 表 2-3 硫甲基三口井類除草劑進樣180秒之濃度偵測極限與再現性 88 圖 3-1 鹼性溶質與陰離子界面活性劑之間的作用力 104 圖 3-2 緩衝液pH效應105 圖 3-3 有機修釋劑效應 106 圖 3-4 在pH 5.6時,添加不同磷酸鹽濃度於樣品基質中之吸收峰高趨勢圖 107 圖 3-5 SDS濃度對硫甲基三口井類除草劑的堆積效能與偵測靈敏度的影響 108 圖 3-6 進樣時間與分析物吸收峰高的關係 109 表 3-1 硫甲基三口井類除草劑進樣480秒之濃度偵測極限與再現性 110 圖 4-1 α-CD、β-CD、γ-CD的結構與性質 139 圖 4-2 FASS模式的濃縮機制 140 圖 4-3 LVSS模式的濃縮機制 141 圖 4-4 pH-mediated模式的濃縮機制 142 圖 4-5 樣品基質效應 143 圖 4-6 磷酸鹽緩衝液的濃度效應 144 圖 4-7 中性環糊精的濃度效應 145 圖 4-8 溫度對分離示窗與解析度的影響 146 圖 4-9 S-β-CD濃度效應 147 圖 4-10 β-CD/S-β-CD雙環糊精系統的濃度效應 148 圖 4-11 不同進樣時間對分析物吸收峰高的影響 149 圖 4-12 進樣時間與分析物吸收峰高的關係 150 圖 4-13 啡口賽口井類對掌異構物的線上濃縮機制(I) 151 圖 4-14 不同電動力時間對啡口賽口井類藥物之遷移行為與吸收峰形的影響(I) 152 圖 4-15 電流趨勢圖 153 圖 4-16 啡口賽口井類對掌異構物的線上濃縮機制(II) 154 圖 4-17 不同電動力時間對啡口賽口井類藥物之遷移行為與吸收峰形的影響(II) 156 表 4-1 五種啡口賽口井類藥物的化學結構和pKa值 157 表 4-2 添加劑對CZE模式對掌分離的影響 158 附錄I 商業型毛細管電泳儀(Beckman Coulter) A-1 附錄II 分析物Simetryn的相關計算 A-2 附錄III 分析物Promethazine的相關計算 A-31768470 bytesapplication/pdfen-US線上濃縮毛細管區帶電泳法微胞電動力層析法環糊精對掌分離三口井類除草劑啡口賽口井類藥物On-line ConcentrationCapillary Zone ElectrophoresisMicellar Electrokinetic ChromatographyCyclodrxtrinEnantioseparations-Triazine HerbicidesPhenothiazines三口井類除草劑與啡噻口井類藥物在毛細管電泳法之分離與線上濃縮之研究Studies of Separation and On-line Concentration of s-Triazine Herbicides and Phenothiazines in Capillary Electrophoresisthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/51810/1/ntu-95-D88223016-1.pdf