2015-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/679095摘要:奈米孔洞材料可由孔徑大小區分為微孔洞材料(有機金屬骨架)、中孔洞材料、巨孔洞材料。這些奈米孔洞都具有高表面積、可控制的形態(薄膜、奈米粒子等)、表面易修飾官能基(NH2 group、SH group、COOH group等)等特性,在各項化工應用領域上都有很高潛力的應用性。此項計畫重點在於合成各種新型多功能奈米奈米孔洞材料(包含微孔、中孔和巨孔材料,其中材料的材質包含氧化矽、過渡金屬氧化物或碳等),並基於本實驗室過去累積經驗,針對目前化工能源課題(包含薄膜分離、生質能和CO2捕捉),提供新的材料。 薄膜分離應用上,我們設計並合成微孔洞奈米顆粒,並且均勻混合到高分子薄膜中,希望能夠提高乙醇/水滲透蒸發的選擇性和流量。生質能應用上,我們的目標是希望延續過去利用合成不同功能性微孔和中孔洞材料做為固體觸媒,將之前木質纖維素轉換成5-羥甲基糠醛(HMF)的研究,更進一步地將HMF轉換成其它生質燃料 (例如dimethylfuran (DMF) 和furandicarboxylic acid (FDCA))。在CO2捕捉應用上,我們將利用硬板模板的方式,合成一種同時具有微、中、巨孔洞三種不孔洞大小的含氮的碳材,並且應用此多階層孔洞的碳材做為CO2的吸附劑,期望此多階層孔洞材料提供大孔洞增加CO2氣體分子的傳遞、小孔洞增加比表面積和CO2的吸附量。 <br> Abstract: Nanoporous materials can be classified into three categories according to their pore size: microporous (or metal-organic frameworks (MOFs) in this study) (< 2 nm), mesoporous (2 – 50 nm), and macroporous (> 50 nm). These nanoporous materials exhibit high surface areas, controllable morphology (nanoparticle and thin films), and tunable surface functionalities (amino group, thiol group, carboxylic group; therefore, they have been showing great potential in many chemical engineering fields. Based on the experience and capability of our laboratory, this three-years project will focus on the synthesis of novel nanoporous materials (the composition includes silica, metal oxides, and carbon) for solving energy issues of chemical engineering nowadays: biomass conversion and CO2 capture. In the application of membrane separation, we will design and synthesize microporous nanoparticles (i.e., metal-organic frameworks (MOFs) and zeolitic imidazole frameworks (ZIFs)) with controllable particle size and functionality. The advantage of our new approach is the synthetic process will be conducted in aqueous solution so that the synthesized MOFs nanoparticles can be homogeneously mixed in organic polymer solution to prepare mixed matrix membranes (MMMs). The fabricated MMMs will be used in the pervaporation of the mixture of water/ethanol for enhanced selectivity and flux. In the application of biomass conversion, we will continue the biomass experiments developed in our group (i.e., cellulose-to-5-hydroxymethylfurfural (HMF) conversion). In particular, we will focus on the production of dimethylfuran (DMF) and furandicarboxylic acid (FDCA) from HMF by using our newly synthesized nanoporous-based solid catalysts. In addition, we will also attempt the so-called 3rd-generation biofuel (i.e., using microalgae as the biomass source). A series of new functional nanoporous-based solid catalysts will be synthesized and used as both microalgae harvester and catalyst for a one-pot microalgae harvesting, cell wall-extraction, and transesterification process. In the application of CO2 capture, we plan to synthesize a hierarchical porous nitrogen-doped carbon material (containing all micropore, mesopores, and macropore). The macropores in the material would increase the access of CO2 gas molecules, and the micro/mesopores in the material would increase the adsorption of CO2.微孔洞材料(有機金屬骨架)中孔洞材料巨孔洞材料薄膜分離生質能源CO2捕捉。Microporous materials (metal-organic frameworks)mesoporous materialsmacroporous materialsmembrane separationbiomass conversionCO2 capture.學術研究生涯發展計畫-桂冠型研究計畫【功能性奈米孔洞材料的綠色製備及能源上的應用】