王藹濃臺灣大學:數學研究所廖宏仁Liao, Hung-ZenHung-ZenLiao2010-05-052018-06-282010-05-052018-06-282009U0001-3006200911015300http://ntur.lib.ntu.edu.tw//handle/246246/180674有關黎曼曲面上,在給定高斯曲率後,是否存在保角變換,使得原來的黎曼度量跟後來的黎曼度量有這樣的保角關係,若否,是否能找的條件使其成立。If g is a metric on M and if K'' satisfies the sign conditions, is K'' the curvaturef some metric g'', that is pointwise conformal to g.0 Introduction 1 Case of (M) < 0p2 Case of (M)=0p6 Case of (M) > 0 10 Appendix 14.1 Identity in x(M) = 0 14.2 The best constant of Trudinger’s inequality . . . . . . . . . . . 14 Remark on Kazdan-Warner’s work 21application/pdf285598 bytesapplication/pdfen-US保角變換prescribed Gaussian curvature黎曼曲面上之保角變換Survey on conformal metrics withrescribed Gaussian curvature n compact Riemannian manifoldthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/180674/1/ntu-98-R94221008-1.pdf