2016-08-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/712677摘要:熱自旋電子學中的自旋電流操控 由於在電子元件越來越小的趨勢下,降低熱耗損具有其必要性,使熱性質在現代半導體和信息科技產業,已成為相當重視的問題。當電荷為基礎的邏輯器件進一步縮小尺寸時,導致焦耳熱耗散的能量,會因電荷電流與阻抗相對的變大,而大量增加,並很快將會超過容許的水平,除了耗能外,還造成小尺寸工作電子元件的不穩定,導致不能可靠地運作。最近科學家發現一個新的研究方向與領域,通稱為“Spin Calortronics”,通過利用自旋和熱電流之間的相互作用,將可能提供一個重要的方向與替代方案,突破因電子元件密度持續增加的熱力學瓶頸,此交互作用也可反過來加以善用元件所產生的熱,作為訊號或電壓產生器,Spin Calortronics 對開發新一代自旋電子器件,提供了一個新的方式,期能進一步降低固態電子元件的功耗。例如,其中一個新穎物理現象,自旋Seebeck 效應,便是其中一個重要的例子,此機制可以產生一個純自旋電流(pure spin current),其具有電子的自旋軌道角動量訊息,但卻無需伴隨電荷電流的產生,因此能大量降低電荷電流產生的焦耳熱。此新領域因此受到極大的注意,但即便此令人關注的新領域發展相當快速,還未有足夠的實驗證據與對應的理論支持。藉由我們之前的優秀成果和技術能力的激發下,本研究計畫將要深入研究,電荷,自旋,與熱的交互作用,通過控制系統中的溫度梯度來探討材料和元件中,因具有很強的自旋軌道耦合所導致的自旋熱輸行為。更具體地,在此計畫和實驗中,我們將提出以下幾種實驗方法來探討自旋電子學熱傳輸的研究與應用,包括:通過自旋seebeck 效應的物理與量測機制來搜索具有大自旋霍爾旋轉角的材料,且研究此材料的圖案化的納米磁體與自旋相關的熱傳輸行為,並且將其作為磁性自旋閥元件,來探討與研究熱自旋轉移磁矩效應。這些主題將不但能了解許多電子自旋、自旋波與熱的基礎物理現象,也在應用上有廣泛與重要的影響。 <br> Abstract: The thermal properties in modern semiconductor and information industry have become an essential issue owing to the necessity of heat removal in increasingly smaller electronic devices. When the charge-based logic devices further shrink in size, the energy dissipation of Joule heating generated by charge currents would soon exceed the tolerance level, so the devices cannot be operated reliably. The term “Spin caloritronics” was recently introduced as a key solution to this thermodynamic bottleneck by exploiting the interaction between spin and heat currents. It offers a promising path to develop a new generation of spintronic devices and to reduce the power consumption of solid state electronic devices. For instance, spin Seebeek effect in spin caloritonics is one of the important mechanisms that can generate a pure spin current without the accompaniment of a charge current and therefore generate much less heat. Despite recent observations of spin dependent thermal transport by several groups, the underlying physical mechanism remains unsettled. Motivated by our previous excellent progress and technical capabilities, the aim of this proposal is to investigate charge, spin, and heat transport by controlling temperature gradient in the system with strong spin-orbit coupling materials and devices. To be more specific, tasks and experiments we propose to accomplish including: Searching large spin Hall angle by spin Seebeck effect geometry, Spin-dependent thermal transport in patterned Nanomagnets with large spin Hall angle, and Thermal spin-transfer torque effect in magnetic spin valve junction with large spin orbit coupling. These topics will have a broad impact on both fundamental physics and applications of spin based phenomena.自旋塞貝克效應磁鄰近效應反常的能斯特效應自旋 - 軌道耦合反轉自旋霍爾效應自旋相關的熱傳輸自旋電子學和自旋caloritronicsspin Seebeck effectmagnetic proximity effectanomalous Nernst effectmagnetic insulatorspin-orbit couplinginverse spin Hall effectspin-dependent thermal transportspintronicsspin caloritronics熱自旋電子學中的自旋電流操控(3/3)