朱浩華臺灣大學:資訊工程學研究所葉舜元Yeh, Shun-YuanShun-YuanYeh2007-11-262018-07-052007-11-262018-07-052006http://ntur.lib.ntu.edu.tw//handle/246246/54037這篇論文的內容包含了一個足部穿戴式的室內人員定位系統的設計、實作以及效能評。這是基於我們足跡追蹤位置方法[7]上的一個延伸。在新系統中除了使用超音波的方式之外,我們另外加入了加速度二次積分的方式,同時量測使用者步伐間的位移向量。而使用者的位置即可藉由累加使用者的每個步伐向量而得到。不像目前大多數的室內定位系統,此足部穿戴式的室內定位系統並不會受到阻擋物、多重路徑、信號干擾及信號死角等問題。且僅需要極少量處於環境中的設備支援,便可以計算出穿戴該系統的使用者位置。在我們提出的系統裡有兩個技術上的挑戰:(1) 位置的誤差會隨著移動的距離而逐漸累加。(2) 在爬樓梯的狀況下腳步間的位移向量無法量測。針對第一個問題,我們只用RFID技術來處理。而第二個問題,我們增加一個加速度感測器來彌補。最後我們以一雙裝置有壓力感測器、超音波收發器、方向感測器、加速度感測器以及RFID讀取器的日式傳統木屐來對我們的系統定位方式作評估與分析。This paper presents the design, implementation, and evaluation of our wearable indoor self location tracker. This is the extension work of our footprint-based location tracking system. In this work we design two methods called the ultrasound-based method and the accelerometer-based method to independently measuring and tracking displacement vectors along a trail of footsteps. The position of a user can be calculated by summing up the current and all previous displacement vectors. Unlike most existing indoor location systems, the footstep-based tracker does not suffer from problems with obstacles, multi-path effects, signal interferences, dead spots and demands little infrastructure in the environment. We evaluate our two methods with a traditional Japanese GETA sandals equipped with force, ultrasonic, orientation, RFID sensors and an accelerometer. There are two technical challenges in the proposed design: (1) location error accumulates over distance traveled, and (2) displacement measurements are sporadic during stair climbing. The first problem is addressed by a light RFID infrastructure, while the second problem is remedied by incorporating the accelerometer-based method into the system.Chapter 1 Introduction 1 Chapter 2 Related Work 4 Chapter 3 Design 7 3.1 Ultrasound-based Method 8 3.2 Accelerometer-based Method 10 3.2.1 Acceleration Compensation 11 3.2.2 Double Integral Algorithm 12 3.3 Combining Ultrasound- and Accelerometer-based Methods 13 3.4 Passive RFID-based Calibration 14 Chapter 4 Prototype Implementation 15 4.1 NAVInote Version 15 4.2 Cricket Mote Version 17 Chapter 5 Experimental Results 19 5.1 NAVInote Version Experimental Results 19 5.2.1 Scenario I: Straight Line 19 5.2.1 Scenario II: Straight Line with RFID Calibration 21 5.2 Cricket Mote Version Experimental Results 21 5.2.1 Scenario I: Straight Line 22 5.2.2 Scenario II: Rectangular Loop 25 5.2.3 Scenario III: Stair Climbing 28 Chapter 6 Conclusion and Future Work 30 6.1 Conclusion 30 6.2 Future Work 30714462 bytesapplication/pdfen-US室內人員定位系統普及計算穿戴式系統GETAindoor location systemubicompwearable穿戴式室內人員自我定位系統GETA Sandals: Wearable Indoor Self Location Tracking Systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/54037/1/ntu-95-R93922124-1.pdf