黃元茂臺灣大學:機械工程學研究所薛任鈞Hsueh, Jen-ChunJen-ChunHsueh2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61512本研究分析煞車抖顫現象的形成原因、前煞車系統的強迫振動與車輛前底盤系統對於此煞車抖顫的振動響應、與設計參數對煞車抖顫之影響。研究方法為將煞車蹄片與煞車碟盤之接觸面以二維接觸面推導彈性接觸方程式,建立煞車碟盤與煞車蹄片的彈性接觸模型,以求得煞車蹄片與煞車碟盤間滑動接觸所產生的表面壓力分布、表面應變、應變摩擦力與煞車扭矩。分析不同的煞車碟盤波面之振幅及前煞車系統設計參數對於煞車扭矩變動的影響,當煞車碟盤波面之振幅增大時,煞車扭矩變動亦會隨之增大,因此,若煞車碟盤厚度變動增大時,會產生較大的煞車扭矩變動。煞車扭矩變動對於煞車系統的設計參數相當的敏感,增加10 %的煞車碟盤彈性模數,可以減低約10 %的煞車扭矩變動。因此,改變前煞車系統設計參數可達到減低煞車扭矩變動的目的。 利用動態機構軟體ADAMS建立車輛前底盤系統的動態模型,分析煞車扭矩變動所造成之車輛頻率響應,結果顯示車輛前底盤系統於22.6 Hz 及38.2 Hz的強迫振動時有顯著的頻率響應。分析車輛前底盤系統中襯套之剛性與阻尼係數和底盤元件之質量對於車輛頻率響應的影響,得知車輛前底盤系統的襯套剛性與阻尼對於振動特性有極大的影響,尤其連結下控制臂與車身之後方襯套於x方向的剛性與阻尼係數。增加此襯套於x方向的剛性為原值的2倍時,會使得車身與方向盤的頻率響應由22.6 Hz提升為29 Hz,使得煞車抖顫發生的車速由21.8 m/s (78.4 km/hr)提升至28 m/s (100.6 km/hr),高於一般車輛的行駛車速。增加此襯套於x方向的阻尼為原值的2倍時,會使得車身的加速度振幅由2.4 mm/s2減低至1.6 mm/s2,因此改變襯套參數可以改善車輛的煞車抖顫。This study analyzes causes of the brake judder, the forced vibration of the fore brake system and the front chassis system to the vibratory response of the brake judder and the effect of design parameters on the brake judder. Elastic contact equations are derived by using the two-dimensional contact surface between the brake pad and the brake disc. An elastic contact model is built, and the surface pressure distribution, the surface deformation, the deformational friction and the brake torque are obtained when the sliding contact occurs between the brake pad and the brake disc. The effects of the brake disc surface wave amplitude and design parameters of the fore brake system on the brake torque variation are analyzed. The brake torque variation increases when the brake disc surface wave amplitude or the disc thickness variation increases. The brake torque variation is quite sensitive to design parameters of the brake system. If the modulus of elasticity of the brake disc increases 10 percent, the brake torque variation decreases about 10 percent. Dynamic machnical software ADAMS is used to build a dynamic model of the front chassis system including brakes.The frequency response of the vehicle caused by the brake torque variation is analyzed. The results show that the front chassis system has significant frequency response when it is subjected to forced vibration with frequencies of 22.6 Hz and 38.2 Hz. The effects of the bushing stiffness, the damping coefficients and mass of the component in the front chassis system on the frequency response are analyzed. It shows that the bushing stiffness and the damping coefficient of components in the front chassis system has significant effect on the vibratory response, especially the stiffness and damping coefficient in the x direction of the aft bushing connected by the lower control arm and the vehicle body. If the stiffness of the bushing in x direction becomes twice of the original value, the frequency response of the vehicle body and the steering wheel shifts from 22.6 Hz to 29 Hz. The correspond vehicle speed increase from 21.8m/s (78.4 km/hr) to 28 m/s (100.6 km/hr), that is higher than the common vehicle driving speed. If the damping coefficient of the bushing in x direction becomes twice of the original value the vibratory acceleration amplitude decreases from 2.4 mm/s2 to 1.6 mm/s2. Hence, the brake judder can be improved by varing bushing parameters.中文摘要…………………………………………………………………………….…i 英文摘要………………………………………………………………………………ii 目錄…………………………………………………………………………………...iv 圖目錄………………………………………………………………………………..vii 表目錄……………………………………………………………………………….xiv 符號表…………………………………………………………………………..…..xvii 第一章 緒論 1 1.1 背景 1 1.2 研究動機 2 1.3 煞車抖顫現象介紹與文獻回顧 2 1.3.1 煞車系統振動現象與分類 3 1.3.1.1 由強迫振動所產生之噪音與振動 5 1.3.1.2 由摩擦特性所產生之噪音與振動 5 1.3.1.3 由煞車系統共振所產生之噪音與振動 6 1.3.2 煞車抖顫現象 6 1.3.2.1 煞車抖顫現象的煞車系統激振 8 1.3.2.2 煞車抖顫現象的車輛響應 13 1.3.3 煞車抖顫現象的激振理論及車身響應模擬 14 1.3.3.1 煞車抖顫現象的煞車系統激振理論模擬 15 1.3.3.2 煞車抖顫現象的煞車系統車身響應模擬 17 1.4 研究目的 18 1.5 研究方法 19 1.6 本文架構 20 第二章 煞車碟盤與煞車蹄片彈性接觸理論分析 22 2.1 前言 22 2.2 線性彈性理論與彈性半平面 23 2.3 正向力與表面位移 29 2.4 切向力與表面位移 32 2.5 分布正向力及切應力 33 2.6 非赫茲彈性體彈性接觸時的表面壓力和表面位移 35 2.7 求解奇異積分方程式 37 2.8 煞車碟盤接觸模型與表面接觸分析 41 2.9 應變摩擦力對於煞車扭矩效應分析 45 第三章 車輛前方底盤動態模型分析 47 3.1 前言 47 3.2 車輛前方底盤動態模型建立 48 3.2.1 前懸吊系統介紹與機構模型建立 49 3.2.2 轉向系統介紹與機構模型建立 52 3.2.3 車輛前底盤系統機構模型建立 54 3.3 參數設定 58 3.3.1 剛性元件參數設定 58 3.3.2 撓性元件參數設定 60 3.3.3 襯套參數設定 68 3.3.4 車胎參數設定 72 第四章 結果分析 73 4.1 煞車系統強迫振動分析 73 4.1.1 車輛行駛初始條件與前煞車系統參數設定 73 4.1.2 煞車系統強迫振動模擬結果 75 4.1.3 煞車碟盤厚度變化對於煞車扭矩變化結果 79 4.1.4 煞車系統強迫振動模擬結果與文獻比較 79 4.2 車輛前底盤系統振動響應分析結果 80 4.2.1 車輛前底盤系統特徵模態分析 81 4.2.2 煞車抖顫分析 91 4.2.3 煞車抖顫於車輛前底盤系統響應與傳遞模擬結果 93 4.2.3.1 左右側轉向節與減振阻尼器質心位置頻率響應 95 4.2.3.2 左右側減振彈簧滑動桿質心位置頻率響應 97 4.2.3.3 左右側下控制臂質心位置頻率響應 99 4.2.3.4 左右側連桿質心位置頻率響應 101 4.2.3.5 轉向齒條質心位置頻率響應 103 4.2.3.6 車身質心位置頻率響應 104 4.2.3.7 方向盤質心位置頻率響應 105 4.2.4 煞車抖顫於前底盤系統響應與傳遞模擬結果與文獻比較 106 第五章 車輛參數對於煞車抖顫敏感度分析 108 5.1 煞車系統強迫振動對於不同初始條件與設計參數分析結果 108 5.1.1 改變前煞車系統材料參數分析結果 108 5.1.2 改變前煞車系統設計參數分析結果 111 5.2 車輛振動響應對於不同設計參數的分析結果 113 5.2.1 改變元件剛性分析結果 113 5.2.1.1 G點襯套剛性敏感度分析 113 5.2.1.2 減振彈簧固定襯套剛性敏感度分析 118 5.2.1.3 A點襯套剛性敏感度分析 122 5.2.1.4 防傾桿固定襯套剛性敏感度分析 127 5.2.1.5 減振彈簧剛性敏感度分析 130 5.2.2 改變元件阻尼分析結果 132 5.2.2.1 G襯套阻尼敏感度分析 132 5.2.2.2 減振彈簧固定襯套阻尼敏感度分析 135 5.2.2.3 A點襯套阻尼敏感度分析 140 5.2.2.4 防傾桿固定襯套阻尼敏感度分析 142 5.2.2.5 減振彈簧阻尼敏感度分析 145 5.2.3 改變元件質量與轉動慣量分析結果 147 第六章 結果討論 155 6.1 計算結果之探討 155 6.1.1 煞車系統強迫振動結果之探討 155 6.1.2 車輛前底盤系統振動響應模擬結果之探討 156 6.2 車輛參數對於煞車抖顫敏感度分析結果之探討 159 6.2.1 強迫振動對於不同初始條件與設計參數結果探討 159 6.2.2 車輛前底盤系統振動響應對於設計參數敏感度之探討 160 第七章 結論與建議 163 參考文獻 166en-US碟式煞車煞車抖顫煞車碟盤厚度變動彈性接觸振動disc brakebrake judderdisc thickness variationelastic contactvibration車輛碟式煞車之煞車抖顫分析Brake Judder Analysis of Vehicle Disc Brakesthesis