郭振華臺灣大學:工程科學及海洋工程學研究所林中一Lin, Chung-IChung-ILin2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/51008本研究之主題為輸入力的最佳設計方法,此方法可用以鑑定水下無人遙控載具的系統參數。本文首先提出一個小型水下無人遙控載具的設計想法,進而介紹推進器之動力模式,並以實驗方法推求推進器馬達之電壓-轉速、以及轉速-推力之響應。根據推進器之推力響應,本研究使用最小平方法估測水下無人遙控載具之參數,根據此組參數計算水下無人遙控載具運動之輸出對於各參數之靈敏度,並求得靈敏度最大化所需之最佳輸入力,針對前進、後退、左移、右移、上移、下移及左橫搖與右橫搖等水下無人遙控載具運動型態,使用最小平方法估測運動方程式之阻力與慣性係數。使用本文所求得的系統參數可模擬載具之輸出響應,此輸出響應與實驗量測所得之輸出資料比對皆十分吻合,可證明本文所提出的鑑定方法之可行性。This study describes an optimal design technique of input forces for the parameter identification of a Remotely Operated Vehicle (ROV). The design considerations and the general arrangement of a small ROV are presented. A thruster’s dynamic model is introduced and it is verified by propeller voltage responses to input voltages. An identification technique using a least squares technique is utilized for the estimation of an initial set of parameters. Based on the initial parameters, optimal inputs are then calculated according to a cost function that maximizes output sensitivity to parameter variations. The resulting parameter estimates are used to refine the estimated parameters from initial experiments. Inertia coefficients, linear drag, and quadratic drag coefficients, terms are determined for surge, sway, yaw, and heave directions. Effects of ROV parameters on the dynamic behavior are simulated using the motion equations, and the results are compared to tank experimental data. Experiments results assure that the scheme has been effectively implemented on the ROV.Table of Contents 誌謝 I 摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables IX List of Symbols XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Thesis Organization 4 Chapter 2 Remotely Operated Vehicle 5 2.1 General Arrangement 8 2.2 Design Considerations 9 2.2.1 Control and Sensors 10 2.2.2 Human Interface 12 Chapter 3 Thruster Model 14 3.1 Motor Model 14 3.2 Fluid Model of Propeller 18 3.3 Thrust Distribution for ROV 23 3.4 The ROV Propeller 26 Chapter4 Parameter Identification 28 4.1 Coordinate Systems 28 4.2 Vehicle Modeling 29 4.3 Identification 30 4.3.1 Identification of the Drag and Thruster Deduction Coefficients 31 4.3.2 Identification of the Inertia Coefficients 32 4.3.3 Optimal Input Design 33 4.3.4 Description of Identification Procedure 35 4.4 Experiments 36 4.4.1 Surge model identification 36 4.4.2 Sway model identification 44 4.4.3 Yaw model identification 52 4.4.4 Heave model identification 60 Chapter 5 Conclusions 71 References 72en-US水下無人遙控載具推進器鑑定,最佳輸入流阻係數慣性係數ROVthrusteridentificationoptimal inputdragInertia coefficients遙控水下載具參數鑑定之研究Parameter Identification of a Remotely Operated Underwater Vehiclethesis