謝國煌臺灣大學:化學工程學研究所余青育Yi, Chin-YuChin-YuYi2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/52242由於使用Nafion為質子交換膜有高成本、高甲醇穿透率、且限制操作溫度(<100 ℃)。故在本研究,我們合成一系列新式無機有機高分子膜應用在直接甲醇燃料電池。首先,把有機官能基引入矽氧烷產生交聯的有機無機混成物質,使這質子交換膜具有高溫穩定性且好的機械性質。用3-(trimethoxysilyl)propyl methacrylate(MSMA)跟不同比例的官能基單體先經由自由基聚合成共聚合物,之後再由於溶膠-凝膠法產生交聯的有機無機混成薄膜。使用FTIR、GPC來鑑定膜材結構與分子量,以TGA、DSC、SEM分別鑑定其熱性質與微觀型態,並探討不同結構膜材的質子導電率與甲醇穿透率。 在本研究中,交連無機有機高分子混成膜帶有羧酸基(COOH)的質子導電度約10-6~10-4 S/cm,而帶有磺酸根的質子導電度約10-4~10-2 S/cm。交連無機有機高分子混成膜比Nafion 117膜(約10-6 cm3/s)的甲醇穿透率(10-8~10-7 cm2/s)低。交連無機有機高分子混成膜有效減低甲醇穿越,並可利用有機無機不同比例來調整導電度與甲醇滲透率。Because of Nafion used as proton exchange membrane is confronted with high cost, high methanol permeability, and limited operating temperature (<100℃). Our study is to synthesize a series of novel inorganic/organic polymer membranes used as proton exchange membranes in direct methanol fuel cells (DMFC). At first, the introduction of the organo functional groups into polysiloxanes yields the crosslinked inorganic/organic polymer hybrid membranes. The hybrids containing crosslinked networks have the potential for high temperature stabilities and good mechanical property. Copolymer of 3-(trimethoxysilyl)propyl methacrylate (MSMA) with various ratios of functional group monomer were prepared by free radical polymerization, and then the inorganic/organic polymer hybrids were produced by sol-gel process. The structure and molecular weight of membrane is characterized by FTIR and GPC. Furthermore, TGA, DSC, SEM are used to analyze thermal properties and morphology of these membranes. In our study, these results showed that crosslinked inorganic/organic polymer hybrid membranes with carboxylic acid group had the conductivity in the range of 10-6 to 10-4 S/cm, and those with sulfonic acid group is in the range of 10-4 to 10-2 S/cm. and showed a reduced methanol permeability (10-8 ~ 10-7 cm2/s) for Nafion 117(10-6 cm2/s). The crosslinked inorganic/organic polymer hybrid membrane was effective in reducing methanol crossover. The proton conductivity and methanol permeability can be controlled by various ratios of the two reactant monomers.摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2-1 燃料電池簡介 3 2-1-1 燃料電池的發展史 3 2-1-2 燃料電池種類 4 2-2 質子交換膜 8 2-2-1 質子交換膜簡介 8 2-2-2 Nafion簡介 9 2-2-3 研發中的質子交換膜 11 2-3 有機無機混成材料 13 2-3-1 溶膠凝膠(sol-gel)法之基本原理 14 2-3-2 溶膠凝膠(sol-gel)法之反應機構(29) 14 2-3-3溶膠凝膠(sol-gel)法之主要影響因素 15 2-4 交流阻抗分析法(36) 17 2-5 甲醇穿透率(methanol permeability)分析(39) 19 2-6 研究目的 20 第三章 實驗方法 22 3-1 實驗藥品與儀器 22 3-1-1 實驗藥品 22 3-1-2 實驗儀器 23 3-2 實驗流程 27 3-2-1 製備MSMA/AA/T高分子膜,溶劑為THF/H2O 27 3-2-2 製備MSMA/SSNa/T高分子膜,溶劑為THF/H2O 28 3-2-3 製備MSMA/SSNa/E高分子膜,溶劑為EG/H2O 29 3-2-4 製備MSMA/SSNa/6 block polymer 薄膜,溶劑為THF/H2O 30 3-2-5 製備MMA/SSNa/T高分子膜,溶劑為THF/H2O 31 3-2-6 製備MSMA/SPMA/T高分子膜,溶劑為THF/H2O 32 3-3 實驗步驟 33 3-3-1 合成MSMA/AA/T高分子薄膜,以THF/H2O為溶劑 33 3-3-2 合成MSMA/SSNa/T高分子薄膜,以THF/H2O為溶劑 34 3-3-3 合成MSMA/SSNa/E高分子薄膜,以EG/H2O為溶劑 35 3-3-4合成MSMA/SSNa/6 block polymer,以THF/H2O為溶劑 36 3-3-5 合成MMA/SSNa/T高分子薄膜,以THF/H2O為溶劑 37 3-3-6 合成MSMA/SPMA/T高分子薄膜,以THF/H2O為溶劑 38 3-4 性質測試 39 3-4-1 傅立葉紅外線光譜(FTIR)分析 39 3-4-2 凝膠滲透層析儀(GPC) 39 3-4-3 質子導電率量測 39 3-4-4 甲醇穿透率量測 40 3-4-5 熱重損失儀(TGA)分析 41 3-4-6 微差熱掃描卡計(DSC)分析 41 3-4-7 掃描式電子顯微鏡(SEM) 41 第四章 結果與討論 42 4-1 傅立葉紅外線光譜(FTIR)分析 42 4-1-1 MSMA/AA/T 混成膜 42 4-1-2 MSMA/SSNa/T 有機無機混成膜 43 4-1-3 MSMA/SSNa/E 有機無機混成膜 44 4-1-4 MSMA/SSNa/6 有機無機混成膜 45 4-1-5 MMA/SSNa/T 有機無機混成膜 46 4-1-6 MSMA/SPMA/T 有機無機混成膜 47 4-2 各種膜材分子量分析-GPC 47 4-3 各種膜材質子導電率分析 48 4-3-1不同官能基(COOH與SO3H)質子導電率比較 48 4-3-2 不同共溶劑合成MSMA/SSNa的質子導電率比較 51 4-3-3 MSMA/SSNa/T合成方式不同對質子導電率的影響53 4-3-4 無機交連結構對質子導電率的影響 54 4-3-5 不同結構所帶磺酸根的膜材對質子導電率的影響55 4-4 甲醇穿透率分析(methanol permeability) 56 4-5 各種膜材的C/P值 59 4-6 熱裂解溫度分析(TGA) 59 4-6-1 MSMA/AA/T交連共聚物熱重分析(TGA) 60 4-6-2 MSMA/SSNa/T交連共聚物熱重分析(TGA) 60 4-6-3 MSMA/SSNa/E交連共聚物熱重分析(TGA) 62 4-6-4 MSMA/SSNa/6 block copolymer熱重分析(TGA)63 4-6-5 MMA/SSNa/T 共聚物熱重分析(TGA) 64 4-6-6 MSMA/SPMA/T 交連共聚物熱重分析(TGA) 65 4-7 微差掃描熱分析(DSC) 66 4-7-1 MSMA/AA/T交連共聚物微差掃瞄分析(DSC) 66 4-7-2 MSMA/SSNa/T交連共聚物微差掃瞄分析(DSC) 67 4-7-3 MSMA/SSNa/E交連共聚物微差掃瞄分析(DSC) 67 4-7-4 MSMA/SSNa/6交連共聚物微差掃瞄分析(DSC) 67 4-7-5 MMA/SSNa/T交連共聚物微差掃瞄分析(DSC) 68 4-7-6 MSMA/SPMA/T交連共聚物微差掃瞄分析(DSC) 68 4-8 薄膜斷面型態分析(SEM) 69 第五章 結論 71 第六章 參考文獻 733440947 bytesapplication/pdfen-USDMFC質子交換膜MSMA質子導電率甲醇穿透率proton exchange membraneproton conductivitypermeability無機/有機高分子混成膜應用於燃料電池質子交換膜Inorganic/organic polymer hybrid membranes for proton exchange membranes in fuel cellthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52242/1/ntu-94-R92524008-1.pdf