陳誠亮臺灣大學:化學工程學研究所林富麗Lin, Fu-LiFu-LiLin2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/52034由於石油價格持續高漲,高耗能之化學工業開始重視能源議題,而其中又以蒸餾程序佔約45%的能源耗損為最多,因此在新替代能源還在研發之同時,提升現有程序之能源使用效率是當務之急。目前對於蒸餾程序之改善已有許多研究,本文將針對其中利用內部能量整合之技術進行深入討論。 內熱整合蒸餾塔(Heat-integrated Distillation Column, HIDiC)之研究在日本與荷蘭已行之多年,以往研究著重於HIDiC之能源節省方面,本文利用數學規劃法提出一普遍且完整之模式,其中包含能量使用以及年總成本之計算,期望可以在省能效益與經濟效益之中取得平衡,可直接決定當年總成本最小時之設計,並且藉由模擬可深入討論傳統蒸餾塔與HIDiC之適用時機,發現當能源價格暴漲,或蒸汽再壓縮機與電力價格下降時,HIDiC在成本上之競爭力即可提升。Due to the uprising price of crude oil, the chemical industries with higher energy consumption are forced to face the energy issue. In chemical industries, the distillation processes account for 45% of total energy consumption. Before the renewable energy can replace the fossil energy completely, it is crucial to improve the energy efficiency of present processes. Nowadays there are many studies about distillation process improvement. This thesis will discuss the design of internal energy-integrated distillation processes. Studies about the internally heat-integrated distillation column (HIDiC) have been investigated for many years. Those studies focused on energy savings of HIDiC. This study will bring up a general and complete model involving energy consumption and total annual costs calculation by mathematical programming approach. It is expected to get balance between energy savings and economical benefits. This model will directly determine the design with minimal TAC and discuss the proper opportunities to use conventional distillation and HIDiC. It is finally discovered that the competitiveness of HIDiC on TAC will increase when the energy price rises suddenly and sharply or the investment cost of the gas compressor and the cost of electricity declines.1 緒論 1 1.1 前言………………………………………………………1 1.2 HIDiC 之原理與結構介紹………………………………2 1.3 文獻回顧與當前之技術背景……………………………4 1.4 研究動機與目的…………………………………………6 1.5 組織章節…………………………………………………7 2 內熱整合蒸餾塔之熱力學理論 9 2.1 HIDiC 之熱力學分析……………………………………9 2.2 修正HIDiC之McCabe-Thiele 圖………………………11 3 內熱整合蒸餾塔逐層式超結構模式建構 21 3.1 模式建立之背景說明 …………………………………21 3.2 模式建立之基本假設條件 ……………………………22 3.3 設計流程之介紹 ………………………………………23 3.4 模式之符號、集合、系統參數與系統變數 (Indices, Sets, Parameters, and Variables) …26 3.4.1 符號說明(Indices) …………………………26 3.4.2 集合說明(Sets)………………………………26 3.4.3 系統參數(Parameters)………………………27 3.4.4 系統變數(Variables) ………………………28 3.5 目標函數與限制式(Objective Functions and Contraints)……………………………………………30 3.5.1 0-1變數決定塔板數限制式(Binary Representation of Column Trays) ………30 3.5.2 質量及能量平衡限制式(Mass and Energy Balance Contraints) ………………………31 3.5.3 邏輯限制式(Logical Constraints) ………39 3.5.4 莫耳分率限制式(Mole Fraction Constraints)…………………………………39 3.5.5 熱力學關係式(Thermodynamics)……………40 3.5.6 變數趨勢限制式(Variable Trend Constraints)…………………………………41 3.5.7 溫壓限制式(Temperature and Pressure Constraints)…………………………………42 3.5.8 氣體與液體莫耳熱焓量計算式(Vapor and Liquid Molar Enthalpy Calculation)……43 3.5.9 蒸氣再壓縮機設計方程式(Compressor Design Equations) …………………………43 3.5.10 塔結構限制式(Column Structure Constraints)…………………………………45 3.5.11 莫菲板效率限制式(Murphree Efficiency Constraints)…………………………………47 3.5.12 規格限制式(Specification Constraints) …………………………………………………48 3.5.13 年總成本計算式(Total Annual Costs Calculation)…………………………………48 3.5.14 目標函數(Objective Functions) …………50 4 模式之實例模擬暨模擬結果分析與討論 53 4.1 最適化軟體 ……………………………………………53 4.2 分離系統與基本性質之介紹 …………………………54 4.3 目標函數一:最小化外部提供能量 …………………55 4.4 目標函數二:最小化年總成本 ………………………60 4.5 討論蒸氣再壓縮機之價格 ……………………………72 5 結論與未來展望 77 5.1 結論 ……………………………………………………77 5.2 未來展望 ………………………………………………78 作者簡歷……………………………………………………………851797095 bytesapplication/pdfen-US內熱整合蒸餾塔最適化HIDiCOptimization[SDGs]SDG7以數學規劃法作內熱整合蒸餾塔最適化設計Internally Heat-Integrated Distillation Column (HIDiC)Design by Mathematical Programming Approachthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52034/1/ntu-96-R94524069-1.pdf