2018-02-242024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/695783摘要:經濟部水利署考量我國自產能源匱乏而化石能源依存度高、以及特殊之地理環境導致水資源匱乏之困境,在致力於新興水源的利用與推動之餘,積極結合研發單位、系統製造商、用水端開發以商品化為前提進行模組測試,期以輔導本土水利產業之發展。水利署在前期科專計畫中已成功發展低耗能電容去離子(Capacitive deionization, CDI)技術之模組系統,以脫鹽程序使處理過後之都市污水處理廠放流水水質達高品質工業製程用的再生水水質,且其產水能耗小於0.5 kWh/m3,成功以低耗能水處理技術同時達到節能與產水之雙重目標。為使上述低耗能CDI技術能往商品化發展,並加速達到模場規模,進行實際之產水應用驗證,應當進一步進行模組放大試驗,建立智慧新節能型水再生系統,以促進環境友善型水處理技術之發展,舒緩臺灣水與能源匱乏之困境。本研究計畫的主要目標為開發貯能型水再生系統,建立以低耗能CDI技術為基礎之智慧新節能型水再生處理模組,以電荷分離原理進行水再生的脫鹽處理,同時開發CDI裝置之電能回收技術,將貯存於CDI裝置之電能回收再使用,並進行水處理衍生能源之能資源整合,最後以生命週期評估與經濟效益計算以分析智慧新節能型水再生處理模組之環境友善性,並進行實施成效建議。本研究計畫為兩年期研究計畫,本研究團隊於第一年期研究計劃(已執行完畢)選用本土化碳材進行多孔性碳質電極的製作,並進行高效能CDI裝置的放大化試驗,將處理流量提升至2.4 LPH,並以CDI裝置處理汙水處理廠放流水,對各項水質進行分析與討論。同時,開發CDI裝置的智慧控制與電能回收技術,搭配水處理衍生能源技術(微生物燃料電池)之開發,評估合適的電能回收系統,最後完成智慧新節能型水再生處理模組之生命週期評估與經濟效益分析。第二年研究計劃(本年度)主軸為「整合智慧新節能型水再生處理系統」,工作內容包括建立低耗能CDI裝置的並聯操作模式,以每小時產水量大於5公升(&gt; 5 LPH)為目標,產生符合多數產業需求之高品質再生水,並結合水處理衍生能源、太陽能光伏發電技術,開發合適的電能回收與電能控制系統。同時,發展資訊及通訊技術,完成智慧新節能型水再生處理系統,並結合系統製造商、用水端開發以商品化為前提於廢水、污水處理廠或工廠進行實際測試,並進行實施計畫建議。期本研究計劃能以前期科專計畫於低耗能CDI技術之研究成果為基礎,以模廠試驗規模、實場應用為目標放大CDI裝置並評估合適之電能回收系統,進一步開發貯能型水再生系統進行能資源整合,建構一個以低耗能、綠色分離技術為主軸之智慧新節能型電容去離子模組系統,促進國內低耗能水再生利用技術之發展,從而確保我國水資源與能源之永續經營與利用。<br> Abstract: Water scarcity is one of the current and future challenges in Taiwan. Geographically uneven distribution of water resource, fast economic growth with extensive water resource extraction and extreme weather and climate events, are all major causes that led to the challenge. To overcome the challenges, government and stakeholders are exploring emerging water resources such as rainwater storage, wastewater reclamation and desalination, to augment existing water supply. But these approaches are generally energy-intensive. Therefore, establishment of a high energy-efficient water reclamation system is an important issue. This study was proposed as a two-year project. This study aims to establish an energy-storage water reclamation system which incorporates a low-energy demand capacitive deionization system, an energy-recovery system and a microbial cell fuel device as a renewable energy supply. In the first year, the proposed energy-storage water reclamation systems in our study demonstrated favorable characteristics of high removal efficiency (&gt;80%), high water production (&gt;80%), low energy demand (&lt;0.5 kWh/m3), high energy efficieny (&gt;80%), potential for energy recovery (up to 45%) and powered by microbial fuel cells, and all of these characteristics made the system very attractive and capable for wastewater reclamation. In the second year, this study intends to scale up of the system to achieve a produced flow rate of 5L/h, as well as optimization of operation parameters for the selected technology. A technical index will be established for evaluating the desalination performance of the capacitive deionization system with various operation parameters. Importantly, a pilot scale experiment will be conducted using the proposed pre-prototype of capacitive deionization system to evaluate the desalination performance of reclaiming the membrane bioreactor (MBR) effluent. The MBR effluent is obtained from Water Resource Recycling Center (WRRC) in Taoyuan city, Taiwan. Furthermore, an integrated assessment framework, including technical performance, environmental impact assessment and cost-benefit analysis, for evaluation of the proposed water reclamation system is also conducted in this study. It is expected that the results from this study could be used to support future development of green and environmentally friendly water reclamation technology.電容去離子技術能源貯存水再生Capacitive deionizationEnergy storageWater reclamation貯能型水再生系統(2/2)