楊申語臺灣大學:機械工程學研究所黃培穎Huang, Pei-YingPei-YingHuang2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61396高分子光波導元件是短距離光通訊產品之關鍵零組件。目前製作高分子光波導元件之方法包括半導體光微影製程、射出成型及熱壓成型,但其製程複雜、設備昂貴,已無法滿足未來光通訊產品低價位、普及化的發展趨勢。因此,本研究主要目的在於開發低成本、高產能及高品質的高分子光波導元件製作技術。 此技術創新之處有兩方面:首先是使用氣體輔助軟模壓印技術來製作光波導元件,利用矽膠(PDMS)翻鑄技術製作出具有波導結構之軟模並輔以剛性載具支撐軟模,可避免壓印結構變及壓印殘留層分佈不均勻之情形;第二是針對SU-8壓印光波導元件使用的設備及製程參數作改良,SU-8具有高結構強度、環境抵抗力佳且對於紅外光波段的光源具有高穿透性,非常適合用來製作波導元件以搭配光纖作光訊號傳輸之應用。 本論文進一步開發CNP(A combined nanoimprint and photolithography patterning technique)壓印軟模,可分為碳粉式CNP軟模、光罩式CNP 軟模及Lift-off式CNP軟模。於PDMS軟模之突出結構上製作金屬擋罩層以作為壓印模具之用,期能達到壓印後快速去除光阻殘留層之效果,以應用於製作波導元件或其它無光阻殘留層之壓印結構複製,甚至應用在曲面壓印。 實驗結果顯示,在適當的壓印壓力與載具設計之下,可成功製作出94μm(寬)× 69μm(高)× 4cm(長)的脊樑式波導元件,其元件之表面粗糙度為5.591nm,在1310nm波段其傳播平均損耗為0.88dB/cm。Abstract Polymer optical waveguides are important components for Short-haul optical communication. Several methods of fabricating polymer waveguides have been reported, including photolithography, polymer injection molding and hot embossing, etc. Photolithography is complicated and needs expensive facility. Polymer injection molding and hot embossing involve high temperature and high pressure. They are time-consuming batch-wise processes. In the thesis, we report a simple and effective technique for rapid fabrication of polymeric waveguides based on gas-assisted UV embossing with soft mold. In this method, the soft mold with waveguides cavity is made by casting a pre-polymer of PDMS against a silicon master, which is prepared using photolithography and deep reactive ion etching. During the process operation, a seal film, a soft mold with waveguides cavity and a silicon wafer coated with SU-8 resist layer are placed in a closed chamber to form a stack. The stack is supported by a solid holder to avoid distortion of patterns on the soft mold during the embossing stage. The nitrogen gas is then introduced into the chamber to pressurize the stack for a period time. Sequentially, the SU-8 resist is cured by UV-irradiation at room temperature. After the soft mold is removed, the polymer waveguides on the silicon wafer are obtained. In this study, a gas-assisted UV embossing facility with UV exposure capacity has been designed, constructed and tested. The effects of processing parameters on the quality of fabricated polymeric waveguides are also investigated. Under proper processing conditions, the multimode polymeric waveguides, with a line-width of 94μm, a height of 69μm and a length of 4cm has been successfully fabricated. The measured surface roughness on the surface of the waveguide component is 5.591 nm and the average propagation loss of those waveguides is 0.88dB/cm measured at a 1310 nm wavelength. These results show the great potential of using gas-assisted UV embossing for rapid fabrication of polymeric waveguides with high productivity and low cost. In addition, we propose an innovative CNP technique that combines the advantages of nanoimprint lithography (NIL) and photolithography. In the experiment, a hybrid mask mold with a light-blocking layer placed on top of the mold protrusions is used. The hybrid mask mold is fabricated by PDMS casting. The light-blocking layer on the PDMS mold is made from carbon-powders or metal material. A large area micro-pattern without residual resist layer can be formed in the resist in a single imprint lithography step. Future work will study the capability of the CNP technique and investigate new improvements to fabricate polymer waveguide and other optical devices.目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 導 論 1.1 前言 1 1.2 光波導基礎原理 2 1.3 光波導之製程發展 3 1.4 半導體光微影技術之限制 4 1.5 奈米壓印微影術 5 1.6 研究動機與目的 6 1.7 論文架構 7 第二章 文獻回顧 2.1 高分子光波導成型技術回顧 11 2.1.1 射出成型高分子光波導製程 11 2.1.2 真空充填製程成型高分子光波導 11 2.1.3 微熱壓高分子光波導製程 12 2.1.4高分子光波導製程技術歸納 12 2.2 本論文應用之壓印技術 13 2.2.1 紫外光固化奈米壓印技術 13 2.2.1 軟微影技術 14 2.2.2 氣體輔助熱壓印製程 14 2.3 綜合歸納 15 第三章 實驗設置與方法 3.1 光波導元件壓印模具的製備方式 20 3.1.1 塑膠微熱壓成型翻模 20 3.1.2 PDMS翻模 23 3.1.3 翻模成品量測評估儀器 25 3.2 阻劑材料性質、製備方式 25 3.2.1 SU-8光波導核心層材料 25 3.2.2 光波導下披覆層材料 26 3.3 壓印設備與壓印製程介紹 26 3.3.1 壓印設備 26 3.3.2 紫外光固化設備 27 3.3.1 壓印製程步驟 28 3.4 光波導量測系統架設與說明 28 3.5 本章節論 29 第四章 光波導元件的製作 4.1 脊樑式波導元件製作流程 44 4.1.1 脊樑式波導下披覆層之製作 44 4.1.2 脊樑式光波導核心層之製作 46 4.2 壓印缺陷及解決之道 48 4.2.1 壓印缺陷探討(1)-軟模變形效應 48 4.2.2 壓印缺陷探討(2)-殘留層不均 49 4.2.3 壓印缺陷探討(3)-模具間距產生的壓印缺陷 50 4.2.4 壓印缺陷探討(4)-脫模時SU-8阻劑剝離基材 50 4.3 壓印成型複製性探討 51 4.3.1 光波導下披覆層的成型性探討 51 4.3.2 光波導核心層的複製成型性探討 51 4.4 本章結論 52 第五章 光波導光場量測結果 5.1 光波導光場量測結果 70 5.2 光波導傳輸損耗量測結果 70 5.3 本章結論 72 第六章 軟模壓印結合光微影成型技術 6.1 CNP壓印技術簡介 77 6.2 研發CNP軟模壓印技術之動機 77 6.3 CNP壓印軟模之製作 78 6.3.1 碳粉式CNP軟模製作方式 78 6.3.2 光罩式CNP軟模製作方式 79 6.3.3 Lift-off式CNP軟模製作方式 80 6.4 氣體輔助CNP軟模壓印結果 81 6.4.1 碳粉式CNP軟模氣輔壓印結果 81 6.4.2 光罩式CNP軟模氣輔壓印結果 81 6.5 本章結論 82 第七章 結論與未來研究方向 7.1 結論 92 7.2 未來研究方向 94 參考文獻 954880397 bytesapplication/pdfen-US氣體輔助壓印PDMS軟模SU-8光阻奈米壓印光波導CNP壓印Gas-Assisted ImprintPDMS Soft MoldSU-8 ResistNanoimprintWaveguide氣體輔助軟模壓印技術之研發應用於製作SU-8脊梁式光波導元件Development and Application of Gas-Assisted Soft Mold Embossing Technology for Fabrication SU-8 Ridge Optical Waveguidesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61396/1/ntu-95-R93522705-1.pdf