黃美嬌臺灣大學:機械工程學研究所鐘文彥Chung, Wen-YenWen-YenChung2007-11-282018-06-282007-11-282018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/61023近年來的研究發現,當熱電元件的尺寸在微奈米尺度時,其晶格熱傳導係數會因尺寸效應而驟降,因而提高熱電元件的致冷效率。本論文主要的研究目標為建立半導體奈米管軸方向上之熱傳導係數的分析理論。本理論基礎是以粒子說的觀點處理聲子,用聲子鬆弛時間法求解波茲曼方程式,並且考慮(i)因空間限制造成聲子色散關係的改變;(ii)因邊界散射而改變的聲子非平衡分佈;(iii)聲子群速和頻率的關係;(iv)以截止波向量和聲子色散關係來求德拜溫度。在分析中發現,因尺寸效應造成奈米管色散關係改變,以致聲子群速降低、聲子鬆弛時間變短、德拜溫度下降,並因材料邊界粗糙度的影響,導致聲子非平衡分佈的改變,都是造成奈米管熱傳導係數驟降的原因。在測試半導體奈米管熱傳導係數對溫度、奈米管半徑和材料表面粗糙度的關係上,我們理論模型計算的結果在趨勢上都和前人的理論模型及實驗結果相一致。The lattice thermal conductivity of a semiconductor nanowire is a critical issue to improve the figure of merit of thermoelectric materials. The main purpose of this thesis is to re-establish a theory for calculating the axial lattice thermal conductivity of a semiconductor nanowire. The theory is based on the particle-concept. We use the relaxation time approximation to solve the Boltzmann’s equation, and take into account (i) the modification of the acoustic phonon dispersion due to spatial confinement, (ii) the change in the non-equilibrium phonon distribution due to partially diffuse boundary scattering, (iii)the frequency-dependence of the phonon group velocity, and(iv) the adoption of cutoff wave-vector in order to calculate the Debye temperature according to the modified phonon dispersion relation. From the analysis, we find that the lattice thermal conductivity is significantly reduced according to the decrease of the phonon group velocity, the phonon relaxation time, the Debye temperature, and the change in the non-equilibrium distribution. The solution of the thermal conductivity on the temperature, the boundary roughness, and the nanowire radius agree well with recent theoretical and experimental investigations.中文摘要 v 英文摘要 vi 表目錄 x 圖目錄 xi 符號說明 xvii 第一章 緒論-1- 1-1 研究背景-1- 1-2 研究動機與目的-2- 1-3 論文架構-5- 第二章 奈米圓管的色散關係(phonon dispersion relation) -6- 2-1 塊材色散關係-7- 2-2 自由表面奈米管之色散關係-8- 2-2-1 Transverse Eigenmodes-9- 2-2-2 Confined Eigenmodes-11- 2-3 箝制表面奈米管之色散關係-14- 2-3-1 Transverse Eigenmodes-14- 2-3-2 Confined Eigenmodes-15- 2-4 平均聲子群速-16- 第三章 Confined Phonon Knudsen Flow -19- 3-1 聲子分佈函數與邊界條件-19- 3-2 Phonon Knudsen Flow-20- 3-2-1 塊材的聲子熱傳導係數公式-23- 3-2-2 奈米管的聲子熱傳導係數公式-23- 3-3 聲子鬆弛時間(phonon relaxation time) -26- 3-3-1 聲子散射機制-27- 3-3-2 馬德生定則(Mathiessen’s rule)-29- 第四章 自由表面奈米管-30- 4-1 常數平均自由路徑法 -31- 4-2 聲子鬆弛時間法-34- 4-2-1 聲子散射率-35- 4-2-2 Debye temperature model-37- 4-2-3 lattice constant model-39- 4-3 結果比較與驗證-41- 第五章 箝制表面奈米管-43- 5-1 箝制表面奈米管的色散關係曲線-43- 5-2 箝制表面奈米管熱傳導係數的結果與討論 -44- 5-2-1 常數平均自由路徑法 -44- 5-2-2 聲子鬆弛時間法-45- 5-3 結論-47- 第六章 結論與未來展望-48- 6-1 理論假設-48- 6-2 結論-50- 6-3 未來展望-52- 附錄A-53- 參考文獻-68-1116261 bytesapplication/pdfen-US聲子色散關係聲子群速德拜溫度波茲曼方程式熱傳導係數phonon dispersion relationphonon group velocityDebye temperaturethe Boltzmann equationthermal conductivity奈米圓管之晶格熱傳導係數分析The analysis of lattice thermal conductivity of nanowirethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61023/1/ntu-94-R92522110-1.pdf