2015-07-132024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/680872摘要:傳統的電子設備利用電池供其用電,而電池除了其成份中的重金屬會對環境造成危害之外,更換電池或是定期充電等維護也需耗費大量的經費與人力。因此,利用能量採集來提供電子設備所需電力便成為受矚目的解決方案。現階段常見的能量採集為太陽能、電磁波、及振動能量採集,其可運用的範圍各不相同。振動能量採集適用於具有穩定振動的場合,如橋樑、機台、甚至是人體等都可以是振動能量的來源。由於振動能量易於取得且分佈廣泛,使其十分有潛力取代電池於低電耗電子設備上的應用。近年來由於無線感測網路(Wireless Sensor Network)及植入式裝置(Implantable Device)的需求,也讓振動式能量採集的相關研究澎勃發展。本計畫以人體運動為振源,設計、分析、並優化一非線性壓電振動能量採集器(圖一)使其能有效採集人運動時的振動能量。此採集器利用磁斥力達成多方向以及寬頻的採集。研究的首先,我們將量化人運動時肢體及軀幹的振動參數,作為設計採集器的依據,並進行最佳化使採集器能有效的獲取人運動時所帶來的振動能。預期本研究所設計的採集器,在未來將結合整流及儲電線路,與無線感測器進行整合(圖二),並應用在穿戴式無線生醫感測器上 (圖三),達到全時間的健康監測。目前國內產業在振動能量採集上投入尚少,然而國內在微電子及壓電材料製造上的優勢,將十分有助於振動能量採集器之發展。而振動能量採集器的研究,也將幫助國內在無線感測器上能有更大的發展空間。<br> Abstract: Traditional electrical devices require batteries as the power sources. However, not only the components of batteries may cause pollution to the environment but also the maintenance of replacing and charging batteries will add extra expense. Therefore, energy harvesting has become an expectable solution to power electrical devices instead of using batteries. Currently, the most common methods of energy harvesting are solar, radio-wave, and vibration energy harvesting. Vibration energy harvesting is suitable for the applications with steady vibration sources, such bridges, machines, and even human motions. Vibration energy is easy to access and widespread so vibration energy harvesters have the potential to replace batteries for the applications of low-power electrical devices. Recently, the demand of Wireless Sensor Network and Implantable Device has prompted the growth of the research about vibration energy harvesting. In this project, we will focus on scavenge vibration energy from human motions. The goal of this project is to design, analyze, and optimize a nonlinear piezoelectric energy harvester (Figure 1) to effectively obtain energy. The proposed harvester relies on magnetic repulsive force to achieve multi-directional broadband energy harvesting. In the beginning of this project, we will quantify the vibration parameters of human motion for the design of the energy harvester. Based on the vibration parameters, the harvester will be optimized to effectively harvest energy from human motion. In the future, the energy harvester will be integrated to a wireless sensor with a rectifier and storage circuit (Figure 2) for the application on wearable biomedical sensing to achieve 24/7 health monitoring (Figure 3). Currently, the development of energy harvesting in Taiwan is still few. However, the superior technique of manufacturing of micro-electronics and piezoelectric materials of Taiwan will be an advantage of the development of vibration energy harvesting. Moreover, the research about vibration energy harvesting will also help the development of wireless sensing.壓電能量採集振動PiezoelectricEnergy HarvestingVibration新進教師學術研究計畫/工學院/非線性振動能量採集器於人體運動上之設計分析與優化