馮蟻剛臺灣大學:電機工程學研究所黃而駿Huang, Erh-ChunErh-ChunHuang2007-11-262018-07-062007-11-262018-07-062006http://ntur.lib.ntu.edu.tw//handle/246246/53440當車輛在濕滑地面起步或高速經過水灘時,驅動輪之加速滑差會增大,極易產生打滑現象,導致車輛失控。循跡防滑控制系統可藉由提供煞車扭矩或降引擎輸出扭矩的方式限制車胎之加速滑差,亦即防止驅動輪在加速時打滑,進而增加行車之穩定性與安全性。本論文即討論循跡防滑控制系統之設計與模擬。 由於摩擦係數與滑差之特性為一非線性曲線,且車輛動態包含氣動阻力等之不確定性,故本論文使用滑動模式理論設計循跡防滑控制系統之核心,即車胎滑差控制器,以對抗系統之不確定性,並計算出維持加速滑差所需之扭矩。至於致動器動態,包含引擎動態與自排變速箱之檔位切換邏輯,雖然在設計車胎滑差控制器時,僅將致動器動態當作一增益,但模擬結果驗證運用以滑動模式理論為基礎的車胎滑差控制器時,其強健性足以對抗模型之不精確性。 此外,本論文利用電腦圖學繪製車輛動態與建構模擬所需之場景,由影像直接比較配備循跡防滑控制系統與未配備循跡防滑控制系統車輛在相同地表上之運動狀況差異性,並利用貼圖的方式增加模擬場景之真實感。Wheel spin is a phenomenon which may occur while a car starts or runs on a slippery road. As the slip between the tires and road increases, the traction force decreases and most drivers may not be able to steer the car properly. Traction control system (TCS) can help improve driving stability and safety by restricting the slip of the driven wheels. The slip restriction is usually achieved by exerting brake torque or reducing the torque generated by the engine. In this thesis, to cope with the strong nonlinearity of the friction-slip curve, the uncertainty caused by the aero dynamics, and the complex actuator dynamics, a tire slip controller based on the sliding mode method is designed for a TCS. Although the controller is designed by taking the actuator model as a simple gain, the simulation results show the robustness of the controller when a detailed actuator model is included. Furthermore, animation based on computer graphics is made to compare the acceleration performance and directional stability of TCS-equipped cars with those of non TCS-equipped cars. In the animation process, texture mapping and billboarding techniques are adopted to make the simulation scenario much more realistic.第一章 緒論 1.1 引言................................................1 1.2 文獻回顧............................................2 1.3 論文架構............................................3 第二章 車輛動態模型建構與車胎滑差控制器設計 2.1 座標軸系統與尤拉旋轉矩陣..........................5 2.2 車輛動態模型建構.................................7 2.2.1 車輪動態...........................9 2.2.2 車體動態.............................13 2.3 車胎╱地表 接觸力模型建構........................14 2.3.1 正向力................................16 2.3.2 摩擦力................................17 2.3.2.1 純縱向滑差與側滑角..18 2.3.2.2 帕西卡車胎方程式....20 2.3.2.3 綜合滑差............21 2.3.2.4 牽引力與側向力......23 2.4 系統動態與分析......................................23 2.4.1 車輛動態模型之簡化.....................23 2.4.2 循跡防滑控制之區域.....................26 2.5 車胎滑差控制器設計..................................28 2.5.1 滑動模式控制...........................28 2.5.2 車胎滑差控制器........................30 2.6 狀態估測............................................32 2.6.1 負載力矩之倫伯格估測器.......................33 2.6.2 速度估測................................35 2.7 模擬結果............................................37 第三章 致動器動態模型建構與節流閥控制器設計 3.1 引擎動態模型建構....................................41 3.2 傳動系統建構......................................44 3.2.1 扭力轉換器..................................44 3.2.2 自排變速箱..................................44 3.2.3 差速器.................................49 3.2.4 引擎輸出經傳動系統至驅動輪之所有狀態流程圖..49 3.2.5 傳動系統模擬................................52 3.3 循跡防滑控制之全系統架構......................... 56 3.3.1 系統架構圖............................. ....56 3.3.2 模擬........................................58 3.3.3 結論........................................62 3.4 節流閥控制器設計...................................62 3.4.1 比例積分微分控制............................65 3.4.2 模擬........................................66 第四章 電腦圖學 4.1 投影概念...........................................71 4.2 光源與著色.........................................73 4.3 場景建構...........................................75 4.3.1 張貼佈告....................................76 4.3.2 高度地圖....................................79 4.3.3 成品展示....................................80 4.4 加速影像顯示技巧...................................83 第五章 模擬結果 5.1 加速效能測試.......................................85 5.2 混和摩擦係數之路況測試.............................88 第六章 結論與未來工作.................................93 參考文獻................................................953735626 bytesapplication/pdfen-US循跡防滑控制系統滑動模式傳動系統電腦圖學Traction control systemsliding modepowertraincomputer graphics車輛之循跡防滑控制系統:滑動模式控制與電腦圖學模擬Vehicle Traction Control System: Sliding Mode Control and Computer Graphics Simulationthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/53440/1/ntu-95-R93921068-1.pdf