吳琮璠臺灣大學:會計學研究所郭宇閎2007-11-282018-06-292007-11-282018-06-292005http://ntur.lib.ntu.edu.tw//handle/246246/61643  民國九十三年六月,博達科技股份有限公司爆發財務危機,震驚國內市場以及有關當局。博達長久以來利用財務操作虛飾營運表現與財務狀況,然而投資人並未察覺財務報表舞弊的發生,最後受到鉅額損害的結果。本文探討幾項相關議題,研究博達案對財務危機預警模式的影響,主要目的為提昇財務危機預警模式的預測能力,除採用過去研究的財務變數外,更加入現金流量變數與非財務變數之會計師意見及事務所規模以提升模型解釋力。本研究使用Logistic迴歸模型與類神經網路與為預測模式進行財務危機預測。   本文以民國89年至93年間發生財務危機的70家上市公司,搭配正常公司125家為樣本,建立五個Logistic模型以探討會計師意見與事務所規模的解釋能力。另以Logistic模型的預測結果為基準,以類神經網路軟體NeuralWorks Professional Ⅱ/PLUS建立倒傳遞網路,並比較預測結果的差異。   實證結果顯示,會計師意見具有顯著的增額解釋能力,但事務所規模對會計師意見的交叉影響並不顯著。進行類神經網路與Logistic模型預測結果的比較後,發現Logistic模型在預測財務危機的表現較佳,類神經網路在正常公司正確率與總體正確率優於Logistic模型。  In June 2004 Procomp Infomatics Ltd. exposed financial failure that shocked domestic market and authorities. Procomp misstating operation performance and financial condition by financial dealings, however, investors were not aware of Procomp management fraud and suffered huge losses. Focusing on some related issues, this thesis studies the influences that Procomp case brings to the early warning model of financial distress. The main purpose of this thesis is to enhance effectiveness of financial distress predicting models. Using financial variables of past studies, this thesis adds cash-flow variables and non-financial variables – going-concern opinion and auditor size – as predictors to improve explanatory power of model. Besides, this research uses logistic regression models and artificial neural networks to predict financial distress.   Using the firm-level data from 2000 to 2004, this research uses a sample of 195 listed companies, 70 in crisis state and 125 in normal state, and establishes five logistic models to examine explanatory power of going-concern opinion and auditor size. Establishing back-propagation networks with the artificial neural network software “NeuralWorks Professional Ⅱ/PLUS”, we also use artificial neural networks to compare with logistic regression model to identify the difference.   The empirical results indicate that going-concern opinion has significant incremental explanatory power over financial variables, but auditor size doesn’t have significant interactive effect on going-concern opinion. Artificial neural network has better performance on normal company and overall prediction, but logistic regression model has better hit rate of stressed companies.中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 表次 Ⅳ 圖次 Ⅴ 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 5 第三節 研究架構 7 第二章 文獻探討與假說建立 9 第一節 財務危機之定義 9 第二節 財務危機預警模式使用之統計方法 11 第三節 會計師意見與事務所規模之相關文獻 14 第四節 類神經網路介紹 20 第五節 假說建立 28 第三章 研究方法與實證模型 29 第一節 Logistic 迴歸模型 29 第二節 模型建構 32 第三節 類神經網路架構 40 第四節 研究樣本 44 第四章 實證結果 52 第一節 敘述統計結果52 第二節 Logistic迴歸結果59 第三節 類神經網路之實證測試70 第四節 模型預測實例77 第五章 結論與建議85 第一節 研究結論85 第二節 研究限制91 第三節 研究建議92 參考文獻93657921 bytesapplication/pdfen-US現金流量會計師意見事務所規模類神經網路Cash FlowGoing-Concern OpinionAuditor SizeArtificial Neural Network後博達時代上市公司財務危機預警研究otherhttp://ntur.lib.ntu.edu.tw/bitstream/246246/61643/1/ntu-94-R91722017-1.pdf