2009-01-012024-05-16https://scholars.lib.ntu.edu.tw/handle/123456789/668681摘要:前言: 近十年來,在台灣乃至全球,光電已成為成長最快速的產業之一,蓬渤發展的光電技術,使得國內光電產值在2005年已達1兆8百億台幣(相當於430億美金)。隨著更多人才的投入及應用的呈現,使得更大的頻寬在更多的領域被開發出來,可以預期光電仍將在新世紀持續地大幅成長。然而在某些產業亟須新的知識投入,才能更向上突破,例如:光學低同調反射儀是新一代極為前瞻的診斷工具,它可以提供近乎即時的斷層影像,應用於光電元件(低散射介質)或活體生物組織(高散射介質),當用在生物組織檢測時,此技術又稱為光學同調斷層掃描術,它利用先進的寬頻光電及光纖元件,偵測光散射訊號以達前所未見的解析度,可用以擷取頻譜及極化影像,用以評估元件之結構、組成、暇疵及損壞,目前,產業所用之低同調反射儀,已達現有光源之極限,有待新一代寬頻光源之加入。 摘要: 目前產業上用的光學低同調反射儀之縱向解析度約在10至20微米,本計劃擬以我們用&#25530;鉻晶體光纖所開發之寬頻近紅外光源( >400 nm 頻寬),將縱向解析度推進至2微米,此超高之解析度將可應用在半導體、固態材料及至生物樣本之斷層影像掃描,尤其是對於生物樣本,可達細胞尺寸以下之即時成像,可使得許多疾病之早期診斷在結構變異時就加以發現,不必等到症狀出現,此技術之實現將可能大幅改變工程師、醫師、研究者及科學家,診斷各式元件及生物組織之方式,以早期發現問題。 欲實現此超高解析度之儀器技術,跨領域之整合是不可或缺的,本計畫將分4子計畫,分別由國立台灣大學光電所的黃升龍教授、國家實驗研究院儀器科技研究中心的陳至信博士,及國立台灣海洋大學電機系之吳宗達教授及台北醫學大學生物醫學材枓研究所鄧文炳教授負責,國家實驗研究院將全力支援本跨領域儀器開發計畫之進行。 本計畫之4子計畫,將以前瞻的寬頻元件、散射分析模式及儀器整合技術為主軸,共同提昇光學低同調反射儀之解析度。黃升龍教授及其研究群將協調跨領域之整合及開發寬頻光纖光源,陳至信博士研究群將致力於薄膜之製鍍,以達<br> Abstract: Preamble: Optoelectronics has been one of the fastest growing industries during the last decade both in Taiwan and around the world. Vigorous pace of progress on photonics technologies generated a US$43-billion (i.e. NT$1,080,000,000,000.) optoelectronics revenue for Taiwan in 2005. This success can be expected to continue well into the new century as more people and more appliances continue to be connected by more bandwidth at more places. However, the breathtaking race to keep up with demand has already caused the industry to deplete the reservoir of scientific knowledge in some areas. For instance, optical low coherence reflectometry (OLCR) is a promising new class of non-contact diagnostic tool that can provide nearly real-time cross-sectional images for photonic devices (less scattering media) as well as in-vivo bio tissues (strong scattering media). When used in bio tissues, OLCR is also known as optical coherence tomography (OCT). It utilizes advanced photonics and fiber optics to characterize devices and tissues on a scale never before possible. Using information inherent to the returning photon signals, OLCR can perform both spectroscopic and polarization imaging to better evaluate the device structures and composition of tissues and lesions. The current effort to develop OLCR is really pushing the limits of the available light sources. Abstract: Current commercial OLCR systems have longitudinal resolutions at 10-20 m. The purpose of this project is to demonstrate a resolution of 2 m using the broadband near infrared (NIR) light source (> 400 nm bandwidth) we developed using Cr doped crystal fibers. This unprecedented longitudinal resolution can be used in semiconductor, solid-state, or bio sample tomography. Especially, for the bio sample, sub-cellular resolution can be achieved in real time. It will enable early diagnosis of many diseases in structure variation rather than functional symptoms. When fully exploited, the technology has the potential to dramatically change the way engineers, physicians, researchers and scientists see and understand the photonic devices and bio tissues in order to better diagnose and treat disease. Interdisciplinary efforts are essential to put together all the required techniques and demonstrate the ultrahigh-longitudinal-resolution OLCR system. The project will have four sub-projects under the leadership of Professor Sheng-Lung Huang (黃升龍, Graduate Institute of Electro-Optical Engineering, National Taiwan University), Dr. Jyh-Shin Chen (陳至信, Instrument Technology Research Center, National Applied Research Laboratories, Professor Tzong-Dar Wu (吳宗達, Department of Electrical Engineering, National Taiwan Ocean University), and Professor Win-Ping Deng (鄧文炳, Graduate Institute of Biomedical Materials, Taipei寬頻光源光學低同調反射儀光學同調斷層掃描術晶體光纖Broadband light sourceoptical low-coherence reflectometryoptical coherence超高縱向解析度光學低同調反射儀之研製(2/3)(國科會)