臺灣大學: 材料科學與工程學研究所林唯芳黃裕清Huang, Yu-ChingYu-ChingHuang2013-03-222018-06-282013-03-222018-06-282010http://ntur.lib.ntu.edu.tw//handle/246246/251787本研究主要探討有機混摻太陽能電池於奈米尺度下的表面型態,對於有機太陽能電池效能的影響。本研究首先研究導電高分子P3HT與PCBM混摻系統中,熱退火程序對於表面型態與效能之間的關係。我們建立一套完整的系統,研究熱退火程序後,光學性質、表面型態變化與太陽能電池效能間的關係。我們利用thermal AFM找出退火溫度與表面型態之間的關係,並將之定量化。除此之外,我們亦利用近場光學顯微鏡研究奈米尺度下的光學變化。經由退火程序處理後之混摻太陽能電池,我們發現其奈米尺度下之吸收度與光學係數,皆有顯著的變化;而PCBM亦會隨著退火時間的增加,逐漸產生聚集的現象,當退火溫度在140℃下,退火時間持續60分鐘後,PCBM聚集尺寸到達μm尺度,過大的相分離程度造成混摻太陽能電池間不連續面的存在,進而使得太陽能電池效能的降低。 由於PCBM系統的熱穩定性不佳且原料較為昂貴,因此我們致力於二氧化鈦奈米桿混摻導電高分子系統。我們首先闡述二氧化鈦系統具有較佳的熱穩定性之外,並藉由表面改質的方式來提升本系統的效率。我們合成了一種新穎的噻吩寡聚物來改質二氧化鈦奈米桿的表面,此表面改質劑能夠有效增進激子分離與傳輸效率。除此之外,此寡聚物接枝在二氧化鈦表面也能夠大大增進無機奈米桿與有機導電高分子之間的相容性,大大增進有機太陽能薄膜的品質與效能。 此外,我們也利用添加一緩衝層在電洞傳導層(PEDOT:PSS)與主動層之間的方式,有效的避免二氧化鈦奈米直接接觸電洞傳導層而可能造成的短路現象,並且藉由添加此緩衝層的方式,能夠增加電子予體和電子載體的接觸面積,進而增加短路電流,並且減少電子電洞再結合的機率,有效增進太陽能電池元件效率。This work presents the study of nano morphology of organic hybrid material for solar cell, trying to improve the performance of hybrid solar cells. First, we investigated the effect of annealing process on the performance of photovoltaic devices based on P3HT/PCBM hybrid materials by monitoring the changes of nanoscale morphology and optical properties. The thermal AFM provides valuable information of morphology evolution quantitatively for the P3HT/PCBM film during the annealing process. We also correlated the morphology evolution and absorption behavior by using scanning near field optical microscopy (SNOM). The results help to determine an optimized annealing process for high performance solar cell. And from this study, we found the PCBM is not thermal stable at 140℃ for 60 minutes. The PCBM aggregates that disruptes the bicontinuous phase and reduces the performance of solar cell. Due to the low cost and good thermal stability of TiO2 nanoparticle , we devote our study to the conducting polymer hybrided with TiO2 nanorods system. We first reveal the good thermal stability of TiO2 hybrid system. And we have synthesized a novel conducting surface ligands of carboxylic terminated oligomer (oligomer 3-hexyl thiophene -COOH) to modify the surface of the TiO2 nanorods. We studied the UV and PL properties of the hybrid made from P3HT and oligomer 3HT-COOH modified TiO2 nanorods. The results indicate the oligomer 3HT-COOH improves the charge separation of the hybrid material as compared with insulating oleic acid ligand. The performance of the solar cell can be significantly improved by 5 folds using oligomer 3HT-COOH modified TiO2 nanorod. Finally, we used poly(3-hexylthiophene) as the buffer layer between electron blocking layer (PEDOT:PSS) and active layer (P3HT/TiO2). The inserted layer can prevent TiO2 nanorods from touching the PEDOT:PSS layer that results in short circuit. Besides, the buffer layer can facilitate the separation and transport of charge carriers efficiently that improve the performance of solar cell.16838174 bytesapplication/pdfen-US有機混摻太陽能電池聚三己基?吩近場光學顯微鏡二氧化鈦奈米桿表面改質Organic solar cellPoly 3-hexylthiopheneScanning near-field microscopyTiO2 nanorodsSurface modification[SDGs]SDG7有機混摻太陽能電池於奈米尺度下表面型態之研究Study of Nano Morphology of Organic Hybrid Material for Solar Cellthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/251787/1/ntu-99-D94527010-1.pdf