臺灣大學: 應用力學研究所吳光鐘方振寧Fang, Chen-NingChen-NingFang2013-03-212018-06-292013-03-212018-06-292011http://ntur.lib.ntu.edu.tw//handle/246246/249928本文目的為探討異向性鍍膜半空間,即為一半無窮平面上完美接合一有限厚度的層板,表面受到衝壓的問題。本研究以雙層異向性材料的格林函數解為基礎,建構連結鍍膜表面的切線位移梯度和曳引力的奇異邊界積分方程式。給定接觸面位移梯度,即可由該積分方程式求解接觸面位置所產生的應力場和衝壓造成的位移。所得之結果與文獻中已有的算例比較顯示,本文所提之方法具有極高的準確性。The objective of this thesis is to discuss the contact problem of a punch pressed on a coated half-space. A coated half-space is a half-space perfectly coated with a layer with finite thickness. The Green’s function for anisotropic bimaterials is used to construct a singular boundary integral equation for a coated half-space. The basic unknowns in the integral equation are the gradient of the surface displacement and surface traction. We can find the surface stress and gradient of the surface displacement once the contact surface gradient of the surface displacement is given. Comparison of the numerical results with the existing results shows that the proposed method is highly accurate.2130337 bytesapplication/pdfen-US鍍膜半空間邊界積分方程式衝壓力coated half-spacesboundary integration equationspunch異向性鍍膜材料之壓陷分析Analysis of Indentation on Anisotropic Coated Half-Spacethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/249928/1/ntu-100-R98543017-1.pdf