陳兆勛臺灣大學:高分子科學與工程學研究所鄭聿劭Cheng, Yu-ShaoYu-ShaoCheng2010-05-122018-06-292010-05-122018-06-292009U0001-2101200911224700http://ntur.lib.ntu.edu.tw//handle/246246/183140本研究主要目的是探討染料敏化太陽能電池中反電極之製備,以熱噴霧法作成之多層奈米碳管反電極取代白金反電極。 本研究利用酸化與未酸化之多層奈米碳管,以熱噴霧法製備染料敏化太陽能電池之反電極,並以SEM以及電導度計分析不同反電極之表面結構及電性。 染料敏化太陽能電池的組裝部份由二氧化鈦薄膜浸泡於3 x 10-4M之N3染料作為工作電極,電解液是0.05M I2,0.5M LiI以及0.5M 4-tert butyl Pyridine (4-TBP)之Acetonitrile溶液,並與改變透光率為參數不同奈米碳管反電極做組裝,測量其光電轉化效率。 最後以奈米碳管添加CMC調配溶液所製作成之染料敏化太陽能電池,在透光率為0%之情形下,亦即其厚度最厚,在100mW/cm2,AM 1.5G之光照條件下得到了6.349 x 10-2%之光電轉化效率為最佳反電極之選擇。The main purpose of the study is to research the preparation of counter electrode in dye-sensitized solar cell (DSSC), while the multi-walled carbon nanotubes (MWCNTs) counter electrode is adopted to take place of the traditional potassium counter electrode. Normal MWCNTs and acidic MWCNTs were coated with hot spray to the surface of the counter electrode of the DSSC. The surface structure was analyzed with SEM, and the electricity with conductivity meter. In order to fabricate the DSSC, TiO2 electrode was dipped in 3 x 10-4M N3 dye to absorb the dye, and the electrolyte in acetonitrile consisted of 0.05M I2, 0.5M LiI, and 0.5M 4-tert butyl Pyridine. The tested counter electrode assemblies were set with different transmittance as parameters so that we could measure the photon-to-electron conversion efficiency. According to the experimental results, a DSSC with the counter electrode constituted with normal MWCNTs and Carboxylmethyl Cellulose (CMC) solution, under transmittance 0%, had the best photon-to-electron conversion efficiency, 6.349 x 10-2%, and this kind of counter electrode is so far the best choice of ours to fabricate DSSC.摘要 Ibstract II錄 III目錄 VI目錄 VIII一章 緒論 1-1 前言 1-2 太陽能電池之種類 2-2-1 無機太陽能電池 3-2-2 有機太陽能電池 3-2-3 染料敏化太陽能電池(Dye Sensitized Solar Cell) 4-3 光電轉換效率簡介 5-4 研究動機與目的 7二章 原理與文獻回顧 9-1 半導體簡介 9-2 染料敏化太陽能電池原理 13-3 電子-電洞對的分離與傳輸 14-4 降低染料敏化太陽能電池效率之原因 16-5 材料介紹 17-5-1 銦錫氧化物(Indium Tin Oxide,ITO) 17-5-2 二氧化鈦(Titanium Dioxide,TiO2) 17-6 染料(Dye) 18-6-1 N3 19-6-2 N719 20-7 電解液(electrolyte) 21-7-1 水溶液電解質 21-7-2 非水溶液電解液 22-7-3 固態電解液 22-7-4 擬固態電解液 23-8 奈米碳管(Carbon Nano Tubes) 23-8-1 單層奈米碳管 25-8-2 多層奈米碳管 28-8-3 奈米碳管之製備方法 30-8-4 奈米碳管之酸化 30-9 太陽能電池效能曲線 31三章 實驗設備原理與流程 33-1 實驗藥品 33-2 實驗設備 34-3 儀器原理 35-3-1 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy) 35-3-2 電導度計(Conductivity Meter) 35-3-3 掃瞄式電子顯微鏡(Scanning Electron Microscope) 36-3-4 照度計 36-3-5 光伏打量測系統(Photovoltaic Measurement System) 37-4 實驗流程 39-4-1 二氧化鈦薄膜製備 39-4-2 吸附用染料之調配 39-4-3 酸化奈米碳管之製備 41-4-4 反電極製作溶液之製備 43-4-5 液態電解液之製備 46-4-6 染料敏化太陽能電池之組裝 46-5 FTIR分析 48四章 實驗結果與數據分析 49-1 酸化奈米碳管FTIR分析 50-2 SEM分析 51-3 電導度分析 57-4 染料敏化太陽能電池光電轉換效率分析 58五章 結論與建議 63-1 結論 63-2 建議 64考文獻 65application/pdf15807854 bytesapplication/pdfen-US染料敏化太陽能電池奈米碳管熱噴霧法反電極dye sensitized solar cellcarbon nanotubesspray pyrolysiscounter electrode以熱噴霧法製備多層奈米碳管反電極在染料敏化太陽能電池之研究與應用Applications and Studies of Multi-Walled Carbon Nanotubes Counter Electrode by Hot Spray-Coated for Dye Sensitized Solar Cellsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/183140/1/ntu-98-R95549019-1.pdf