馬小康臺灣大學:機械工程學研究所邱永浩Chiu, Yung-HaoYung-HaoChiu2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61172本文藉由CFD-RC套裝軟體來模擬質子交換膜燃料電池內之燃料濃度場分佈、溫度分佈、流道內之流場、壓力場分佈對質子交換燃料電池性能之影響。且同時針對三種不同形狀之流道,討論個別之極化曲線,以改善濃度過電位或是其他過電位所造之的電壓損失,進而找出各個流道設計的優缺點及最佳性能以期提升質子交換膜燃料電池之效能。 在理論分析中使用Navier-Stokes Equation作為流場的統御方程式並配合能量、成份守恆方程式及電化學相關之方程式求解電池內部的各項性質如壓力、速度、電流密度及溫度等等。而在數值方法中以有限體積法為離散方法,並利用SIMPLEC法求解流場之分佈。本文的結果顯示就流動機制而言,一般還是指叉型流道的流動機制好過於蜿蜒式流道再好過於平行式的流道;若是由電化學反應方面,在本文中所模擬的三種流道中,以旋轉-指叉式流道的電化學反應性能最佳,蜿蜒式流道次之,平行式流道則最差;壓損方面則是蜿蜒式流道最大。The study simulates the distribution of concentration, temperature, pressure and current density in a single proton exchange membrane fuel cell by commercial software CFD-RC. Here it also considers different operation conditions to discuss the influence on performance. Meanwhile, four completely different types of flow channels were used to analysis their polarization curves in order to improve the voltage loss caused by over-potential of concentration or others. With the above observations the advantages and disadvantages of each flow channels could be discussed and then the performance would be improved. The Navier-Stokes equations with the energy, species equations and the relative electrochemical equations were solved in this study. The SIMPLEC algorithm with finite volume based scheme was used in this numerical analysis. The results indicated the concentration of oxygen in the cathode are significant effects for the cell performance, the concentration over-potential increased while the failure to transport sufficient oxygen to the catalyst, oppositely the cell performance increased as the inlet pressure or concentration of the reactant are increased. The results also shown that the Spiral-Interdigitated channel type has the best output performance and the serpentine channel type has the greatest pressure drop.第一章 導論..........1 1.1 前言..........1 1.2燃料電池之介紹..........3 1.2.1燃料電池分類..........3 1.2.2燃料電池基本原理及特性 ..........4 1.2.3質子交換膜燃料電池(PEMFC)..........5 1.2.4 性能曲線(I-V Curve)..........8 1.3文獻回顧..........9 1.4 研究目的..........21 第二章 理論模式分析..........23 2.1物理模型..........23 2.2基本假設..........24 2.3 統御方程式..........24 2.3.1 質量守恆方程式..........25 2.3.2 動量守恆方程式..........25 2.3.3 能量守恆方程式..........27 2.3.4 成份守恆方程式..........28 2.3.5 電化學反應方程式..........30 2.4 邊界條件..........32 2.4.1 陽極端邊界條件..........32 2.4.2 陰極端邊界條件..........32 2.4.3 多孔性薄膜參數..........33 2.4.4 壁面邊界條件:..........34 2.5 初始條件..........34 第三章 數值方法分析..........35 3.1 數值模型..........35 3.2 數值方法..........35 3.2.1 通用守恆方程式(Generic Conservation Equation)..........36 3.2.2 有限體積法..........36 3.2.3 SIMPLEC 演算法則..........38 3.3 解題流程..........41 3.4 格點測試..........42 第四章 結果與討論..........43 4.1 不同電流密度之特性..........43 4.1.1 速度場..........43 4.1.2 壓力場..........44 4.1.3 溫度場..........44 4.1.4 氧氣及水濃度場..........46 4.1.5 氫氣濃度場..........46 4.1.6 Z方向之電流密度場..........47 4.2 不同流道設計之比較..........48 4.2.1 氫氣、氧氣濃度場..........48 4.2.2 水濃度場..........50 4.2.3 電流密度場..........50 4.2.4 極化曲線..........51 4.2.5 功率..........53 4.2.6 壓力場..........55 4.2.7 溫度場..........56 4.2.8 流場..........57 4.3 陰極加濕對性能之影響..........58 4.4 陽極加濕對性能的影響..........59 第五章 結論與建議..........60 5.1 結論..........60 5.2 未來展望..........62en-US質子交換膜燃料電池蜿蜒指叉性能PEMFuel CellSerpentineInterdigitatedPerformance質子交換膜燃料電池在不同流道之性能比較與分析Performance Comparison and Analysis of Proton Exchange Membrane Fuel Cells in Different Fluid Channelsthesis