2011-05-012024-05-14https://scholars.lib.ntu.edu.tw/handle/123456789/655383摘要:近數十年來由於社會經濟繁榮,生活富裕,加上營養過剩、不當的飲食習慣及生活忙碌、緊張、欠缺運動,造成高血壓、高血脂症等各類慢性疾病持續增加,更使得心血管疾病高居民國九十二年國人十大死因之第二名。科學家們希望找出治療心血管疾病的方法。起初分子生物學家試圖找出可能致病的單一分子調控路徑,並以分子生物技術改變或阻斷此一調控路徑,最終達成疾病的根治或更有效率的預防。然而,一方面此做法需要鉅額經費,且失敗機率出乎意料地高。究其緣由,多半由於生物系統中具有複雜的分子交互作用網路。且因分子交互作用網路具相當程度的重複性(redundancy),某些特定功能可藉由不同的路徑達成;另一方面,隨著高通量技術的發展(如基因晶片、快速基因定序…等方法),使得分子生物訊息量以級數倍增。面對如此龐大的資料量,繼續依照傳統方式,一次只確認一個路徑也已不再可行。再者,許多研究均指出,生物體在系統層次的表現可能是具突現性(emergent property)的,也就是整體功能無法用任一個特定元件已知的功能來解釋(如大腦的運作),凡此種種,在在說明傳統的簡化論,在生物體這類複雜的系統問題上,無法提供令人滿意的解決方案。因此我們提議發展一具普適性的分析工具,用以評估能描述系統時變特徵的動態生醫指標。例如特定生理參數在健康或患病狀況下,於一定時間內的獨特變化模式。分析動態生物參數的二大難題,即其非穩態及非線性特徵。一般用於生物醫學研究上的數學分析方法,如傅立葉分析,或是大多數生物統計的參數,都假設訊號應是穩態及線性的。因此必須另創嚴謹的數學理論與工具,以描述「真實世界」中的動態生醫指標,並導入生物醫學社群中。近來流行的Hilbert–Huang transform(HHT) 是一種非線性而且適應性很好的的方法, 很適合用於非穩定性的數據分析。HHT包含兩個部分: 1.empirical mode decomposition,用來解構訊號,並且保留時間瞬時資訊。2. Hibert transform,用來算出瞬時頻率及瞬時振幅。本研究將會大量使用這種方法。本研究應用非線性複雜度分析法,來同步分析與紀錄心血管疾病腦波及心電圖之訊號。在腦波方面,不同頻段的電波(alpha, beta, theta, delta, gamma) 將分別在腦部各區域之功能性連結以及互相溝通的範疇上受到檢查。至於心電圖則是研究心率變異,這能用來代表身體自主神經系統對應於壓力及環境變化的調控。我們深信腦與心臟之間會進行和諧性的系統效應,也認為腦與心臟會進行對話(cross talking)以達到系統最佳化效應。我們在這3 年的目的為研究心血管疾病患者(包含狹心症患者、心肌梗塞患者、心臟衰竭患者等心臟重症)的心律與腦波非線性系統的指標且深入探討其對預後之相關。由於心律變異度的非線性分析與腦波的非線性分析息息相關;病患自主神經系統活化在這當中扮演的角色相當值得作為進一步晶片快速分析的理論基礎。<br> Abstract: Scientists try to find single pathway to illustrate the pathogenesis of diseases. They tryto block this pathway by molecular mechanism to achieve disease control. However,this kind of approach costs a big budget. The failure rate of such approach is high.Human body is a complex system involving numerous interactions between differentorgans. The interaction simultaneous occurs and makes biological information full ofredundancy. Recently, concept of dynamic biomarker has been proposed to studybio-signals. Dynamic biomarkers uses non-linear method to analyze biological signals.Conventional linear analyses, including frequency and time domain analyses, havebeen reported as prognostic factors for human diseases. However, the nonstationarity(i.e., the presence of “patchy” patterns in biological signals, resulting from theresponses to the changing environment) and nonlinearity (irregular and unpredictablefluctuations of biological signals) of biological systems may cause the intrinsiccomputational errors of the linear algorithms. Those influences of nonstationarity andnonlinearity on biological signal time series can be mathematically qualified orquantified based on fractals and chaos theory. Hilbert–Huang transform (HHT) is afamous method to evaluate such condition and focus specifically on heterogeneouscomplexity. We hypothesized that such complex structure is “breakdown” (loss ofinformation richness) and points to poor prognosis in cardiovascular diseases. We willfocus on patients with coronary artery disease, acute myocardial infarction andcongestive heart failure in this 3-year study. The electrocardiography (EKG) andelectroencephalography (EEG) will be recorded simultaneously. The correlation willbe analyzed between ECG and EEG after decomposition by HHT. The prognosticsignificance of such correlation will also be evaluated.心電圖非線性數學複雜度運算去趨勢波動分析多尺度熵分析高血壓原發性皮質醛酮症electrocardiographynon-linear complexitydetrended fluctuation analysismulti-scale entropyhypertension and primary hyperaldosteronismUsing Nonlinear Complexity Method for Analysis of the Correlation and Cross Talking between Electroencephalography and Electrocardiography in Cardiovascular Disease