張所鋐Chang, Shuo-Hung臺灣大學:機械工程學研究所黃柏叡Huang, Bo-ReiBo-ReiHuang2010-06-302018-06-282010-06-302018-06-282009U0001-1608200921051000http://ntur.lib.ntu.edu.tw//handle/246246/187198本論文針對成長高良率與直度比率高的螺旋碳管,進行成長研究。發現到當利用0.6克(顆粒大小10um以下等級)的鐵粉與0.3克(顆粒大小0.1um以下等級)的二氧化錫粉末加入10mL的酒精中,並混合均勻作為催化劑使用,再將完成後的催化劑均勻旋塗在二氧化矽試片上,並將試片於大氣中升溫至150℃進行12個小時的退火步驟,所成長而成的螺旋碳管在良率與直率方面有不錯的成果。驗以化學氣相沈積法來成長螺旋碳管,成長壓力為1大氣壓,成長溫度為700℃,成長時間為20分鐘,並通入反應氣體乙炔:氬氣為5:650 sccm;螺旋碳管的成長結果以掃瞄式電子顯微鏡作檢驗,同時統計其線徑、外徑、良率與直率等特徵,並分析催化劑顆粒大小對成長之螺旋碳管尺寸的影響。驗結果發現所成長的螺旋碳管平均外徑為1.91um,較過去鐵錫配方的螺碳管碳管大上若干倍,線徑平均值也在0.52um,成長良率高達88%,直螺旋碳管佔所成長的螺旋碳管的比例(直率)也達70%。實驗結果還發現,催化劑顆粒大小對所成長的螺旋碳管線徑有正相關的影響,且當催化劑中鐵顆粒大於4um以上,其析出碳管的能力會受到催化劑活性受限,無法成功析出碳管。In this study, we focus on growing high yield rate and straight rate carbon coils. We use 0.6 g Fe particles (< 10 um) and 0.3 g SnO2 particles (< 0.1 um) mixing in 10 mL alcohol (99.5 %) for catalyst. Spin coating it in order to make sure the catalyst distribute on the silicon oxide wafer uniformly. And the sample annealed by the oven at 150 ℃ in air for 12 hr. The growing result lives up to the high yield and straightness we expect.arbon coils have been synthesized by chemical vapor deposition, which are obtained by 2 metals-catalyzed pyrolysis of acetylene at 700 ℃, under 1 atm. The growing results have been observed by SEM and TEM. The coils’ line diameter、coil diameter、yield and straightness are the main characteristic which we concern about, and then we analysis how catalyst size effects the size of carbon coils. n summary, the average coil diameter is about 1.91 um, and the size is bigger than the size of another Fe-Sn growing carbon coils. And the line diameter is about 0.52 um, growing yield is about 88 % and straightness of the growing carbon coils is about 70 %. And the experiment result also discovers the size of the catalyst has a positive relation to the line diameter. And the size of the iron catalyst which is bigger than 4 um can’t grow the carbon tubes successfully, because of the activity of the iron catalyst is too weak to grow carbon tubes.誌謝 i要 ivbstract iv錄 iv目錄 v目錄 iv1章 序論 1.1 前言 1.2 研究動機與目標 22章 文獻回顧 4.1 螺旋碳管成長方式 4.1.1 利用鐵、鉻、錳、鉬合金成長螺旋碳管 5.1.2 螺旋碳管成長模型架構 5.1.3 使用鐵、銦、錫三元素成長螺旋碳管 7.1.4 利用鐵錫催化劑鍍膜成長螺旋碳管 9.1.5 以粉狀鐵與二氧化錫成長螺旋碳管 11.2 螺旋碳管大小尺寸控制 12.2.1 使用鐵、錫二元素成長螺旋碳管及其尺寸探討 12.2.2 催化劑濃度對螺旋碳管尺寸影響 13.2.3 於不同金屬基板成長螺旋碳管與其尺寸關係 14.3 螺旋碳管的性質量測 163章 實驗設備及流程架構 18.1 實驗流程規劃 18.2 催化劑前導配液製作流程 25.3 掃瞄式電子顯微鏡原理及量測步驟 274章 實驗結果與討論 31.1 退火因素對催化劑(A)所長成之螺旋碳管影響 32.2 退火因素對催化劑(B)所長成之螺旋碳管影響 38.3 催化劑顆粒對螺旋碳管成長之影響 44.4 催化劑(A)的成長結果與其他文獻之比較 545章 結論與未來展望 62.1 結論 62.2 未來展望 67參考文獻 685880962 bytesapplication/pdfen-US螺旋碳管催化劑退火化學氣相沈積法良率直率Carbon coilCatalystAnnealingChemical Vapor DepositionYieldStraightness高良率粗直螺旋碳管成長研究Synthesis of Carbon Micro-Coils with High Yield Growth Studythesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187198/1/ntu-98-R96522608-1.pdf